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ABSTRACT Software defect prediction is essential 

for improving software quality and reducing testing 

costs. The main goal is to detect and forward just 

faulty modules to the testing phase. This study 

presents an advanced ensemble-based model for 

software fault prediction that integrates many 

classifiers. The suggested approach utilizes a two-

stage prediction technique to identify damaged 

modules. Initially, four supervised machine learning 

techniques are utilized: Random Forest, Support 

Vector Machine, Naïve Bayes, and Artificial Neural 

Network. These algorithms undergo repeated 

parameter optimization to get maximal accuracy. In 

the subsequent phase, the predicted accuracy of the 

different classifiers is amalgamated into a voting 

ensemble to get the final predictions. This ensemble 

method enhances the precision and dependability of 

fault forecasts. Seven historical defect datasets from 

the NASA MDP repository, namely CM1, JM1, 

MC2, MW1, PC1, PC3, and PC4, were used to 

develop and assess the suggested defect prediction 

system. The findings indicate that the suggested 

intelligent system for each dataset attained 

exceptional accuracy, surpassing twenty advanced 

defect prediction approaches, including base 

classifiers and ensemble algorithms. 

Keywords: Machine learning, software defect 

prediction, heterogeneous classifiers, random 

forest, support vector machine, naïve Bayes. 

 

INTRODUCTION 

Accelerated globalization has converted our globe 

into an interconnected village, with the software 

sector playing a pivotal role in advancing 

development. In today's digitally networked world, 

software applications have become essential to our 

global civilization, underpinning everyday 

activities, companies, and crucial infrastructure. 

This effect has strengthened, especially during the 

COVID-19 epidemic, which has expedited our 

dependence on online platforms for communication, 

trade, and distant labor.   

In a Software Development Life Cycle (SDLC), the 

workflow from the development team to the Quality 

Assurance (QA) team often encompasses many 

phases. The development team first delivers the 

software code to the QA team for testing. The QA 

team meticulously assesses the program, detecting 

and documenting errors or problems. The iterative 

feedback loop between development and quality 

assurance continues until a high-quality, defect-free 

program is achieved. 

The product is attained [6], [7]. Figure 1 illustrates 

the process from the Development team to the QA 

team inside the Software Development Life Cycle 

(SDLC). Nonetheless, achieving defect-free 

software presents significant obstacles. Three 

pivotal aspects that significantly impact software 

quality assurance are time, financial resources, and 

the availability of proficient personnel. The 

industry's increasing demand requires the 

development of efficient testing methodologies to 

maximize precious resources while upholding the 

highest standards of software quality [8].  

This is where software defect prediction (SDP) 

assumes prominence. Software Defect Prediction 
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(SDP) involves using historical data and machine 

learning (ML) methodologies to anticipate and 

detect probable flaws in software systems prior to 

the testing process [9]. It examines the intricate array 

of software parameters, including code complexity, 

size, and historical defect data, to develop models 

that can assess the probability of problems [10].  

The incorporation of software defect prediction 

alters the conventional development-to-QA process. 

The feedback loop is modified by proactively 

detecting possible flaws prior to the testing phase. 

The predictive insights enable developers to identify 

and resolve possible problems prior to the software's 

delivery to the QA team. This procedure optimizes 

efficiency and diminishes the conventional 

exchanges between development and QA. This 

transition fosters a more efficient and economical 

software development life cycle [11]. Figure 2 

illustrates a visual depiction of the diminished 

feedback loop resulting from the implementation of 

the SDP model.   

In the realm of software defect prediction, 

classification approaches are crucial. They include 

classifying data into categories or labels, making 

them very essential for detecting possible software 

problems. Classification approaches include 

decision trees, logistic regression, support vector 

machines, among others [12], [13]. These strategies 

facilitate the proactive evaluation and resolution of 

software quality issues. Historically, several 

research have used classification approaches to 

improve the precision of defect prediction models. 

Nonetheless, previous research in this domain 

exhibits limitations, including issues associated with 

classification methodologies, overfitting, and 

underfitting [14].   

 

FIGURE 1. Development-to-QA workflow in SDLC.[1] 
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Alongside classification, Ensemble Modeling (EM) 

has developed as a promising approach that 

amalgamates predictions from various machine 

learning models to enhance overall performance 

[15]. Ensemble approaches, such bagging, boosting, 

stacking, and random forest, enhance the field by 

addressing intrinsic problems [15]. Ensemble 

approaches mitigate the hazards of overfitting, 

underfitting, and biases inherent in individual 

classifiers by consolidating the predictions of 

numerous base classifiers. They have shown their 

value in improving the accuracy and resilience of 

defect prediction models by mitigating the inherent 

biases of individual classifiers [16], [17]. 

Researchers have faced a common obstacle: the 

intrinsic vulnerability of ensemble approaches to 

biases that might affect their effectiveness [18], [19]. 

Figure 3 provides a summary of software fault 

prediction with machine learning approaches. 

 

 

FIGURE 2. Development-to-QA workflow using SDP.[1] 

 

LITERATURE REVIEW 

Authors in [3] created an intelligent cloud-based 

SDP system that integrates data fusion with 

decision-level machine learning fusion 

methodologies. The system amalgamated predicted 

performance from three classifiers: naïve Bayes 

(NB), artificial neural network (ANN), and decision 

tree (DT) using a fuzzy logic-based fusion approach. 

The suggested system, assessed using NASA 

information, surpassed other methodologies and 

sought to attain high-quality software with  reduce 

expenses. A comprehensive comparative analysis of 

multiple classifiers was performed regarding 

software defect prediction [23]; the authors 

examined ten machine learning algorithms, namely 
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Decision Tree, Naive Bayes, K-Nearest Neighbor, 

Support Vector Machine, Random Forest, Extra 

Trees, Adaboost, Gradient Boosting, Bagging, and 

Multi-Layer Perceptron. The investigation used 

benchmark NASA datasets from the PROMISE 

repository, including CM1, KC1, KC2, JM1, and 

PC1. The experimental findings indicated that the 

used algorithms attained superior average accuracy 

rates on the PC1 dataset. The Random Forest 

classifiers with the PCA method demonstrated 

enhanced average performance across the datasets. 

Figure 4 depicts the categorization procedure. 

  

In [24], the authors tackled the issue of handling a 

substantial quantity of software defect reports in 

software development and maintenance. A software 

defect prediction (SDP) model using LASSO–SVM 

was developed to enhance prediction accuracy. The 

model integrated feature selection using the minimal 

absolute value compression and selection approach 

with the support vector machine algorithm. This 

methodology significantly improved predictive 

accuracy, with simulation outcomes demonstrating 

an accuracy of 93.25% and 66.67%, a recall rate of 

78.04%, and an f-measure of 72.72%. The suggested 

model surpassed conventional approaches for 

accuracy and speed. In [25], researchers introduced 

a cloud-based system for real-time software fault 

prediction, evaluating four back-propagation 

training methods. Bayesian regularization (BR) 

proved to be the most efficacious. The approach 

used a fuzzy layer to determine the optimal training 

function depending on performance metrics. NASA 

datasets accessible to the public were used for 

assessment, applying several metrics. The findings 

indicated that BR surpassed other training 

algorithms and commonly used machine-learning 

methodologies.  

The researchers in [26] used machine learning 

techniques to evaluate the efficacy of varying tree 

quantities in the RF method for software defect 

prediction, using the RAPIDMINER machine 

learning tool. They evaluated the efficacy of varying 

quantities of trees inside the RF algorithm. The 

findings demonstrate that augmenting the quantity 

of trees marginally enhances accuracy, achieving a 

peak accuracy of 99.59% and a nadir accuracy of 

85.96%. The study emphasized the efficacy of the 

RF algorithm in predicting software defects, 

especially when using about one hundred trees. 

 

 

METHODOLOGY 

The suggested study presents an intelligent 

ensemble-based methodology for software fault 

prediction. This model employs several supervised 

machine learning classifiers to improve accuracy. 

The novel methodology seeks to effectively tackle 

issues in forecasting software flaws. The outputs of 

individual base classifiers are aggregated using a 

voting ensemble model, effectively using the 

advantages inherent in the proposed VESDP 

approach. This ensemble method improves the 

model's predictive capability by integrating many 

classifier outputs, resulting in a more reliable and 

precise software fault prediction. Figure 5 illustrates 

an overview of the suggested paradigm. The 

suggested VESDP model consists of two layers: 

training and testing. The training layer has three 

stages: 

1) data preprocessing 2) base classification 3) 

ensemble classification. 

 

PERFORMANCE EVALUATIONL 

In the aforementioned formulations, α λ denotes the 

faulty modules in the software that were accurately 

identified as defective by the model; conversely, α θ 

signifies the non-defective modules in the software 
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that were properly classified as non-defective by the 

model. The βλ and βθ values show a discrepancy 

between actual and projected values. βλ implies that 

the module was non-faulty however classified as 

defective, while βθ signifies that the module was 

defective yet classified as non-defective by the 

model. 

 

 

RESULTS AND DISCUSSION 

This study created a voting ensemble-based software 

defect prediction model (VESDP). Seven publicly 

available NASA datasets (CM1, JM1, MC2, MW1, 

PC1, PC3, and PC4) were retrieved from the MDP 

repository to conduct the tests. During the 

preparation phase, the datasets underwent three sub-

activities: partitioning, cleansing, and 

normalization. The partitioning process splits the 

datasets into two subsets, namely training and 

testing, at a ratio of 70:30 according to the class-

based splitting criterion [53]. Initially, four diverse 

supervised classification methods, including RF, 

SVM, NB, and ANN, were used to train the model. 

The classifiers were repeatedly tuned until each 

achieved the maximum accuracy for the used 

datasets. The prediction accuracy of separate 

classifiers is amalgamated using the voting 

ensemble approach, hence enhancing the 

performance of the proposed model. Eight 

commonly used assessment metrics were employed 

to assess performance [22], [54]. All performance 

metrics have been obtained via a confusion matrix 

generated by tools given by Python [23], [55]. The 

outcomes derived from both the training and testing 

datasets for each classifier are detailed below. 

 

FIGURE 3. Comparison graph.[1] 
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CONCLUSION 

Software defect prediction seeks to discover 

erroneous modules prior to the testing process, 

allowing for concentrated testing on those modules 

most likely to have flaws. An effective defect 

prediction model may save software development 

expenses by reducing the resources allocated to 

quality assurance operations during testing. This 

paper suggested an intelligent ensemble approach 

for software fault prediction. The model was 

executed with benchmark datasets obtained from the 

NASA defect repository. The proposed model 

amalgamated the predicted accuracy of four diverse 

supervised classifiers by the voting ensemble 

classification approach. Eight performance metrics 

were used for statistical analysis. A comparative 

study was undertaken to demonstrate the efficacy of 

the method used in the suggested model against 

state-of-the-art techniques. The developed VESDP 

model surpassed contemporary research and 

demonstrated its efficacy in the software fault 

prediction process. 

 

LIMITATION OF PROPOSED MODEL 

The training data substantially influences the 

efficacy of any machine-learning model, including 

ensemble models. The training dataset's 

inconsistency, absence of data, or noise may 

adversely impact the model's predictive capability. 

The requirements, development methodologies, and 

code used in software development are always 

evolving. An ensemble model trained on historical 

data may find it challenging to adjust to unforeseen 

changes in project dynamics or novel development 

paradigms. The algorithm analyzes historical data to 

provide projections based on identified patterns. 

Should the present task significantly diverge from 

the projects inside the training dataset, the model's 

efficacy may be compromised. 

 

FUTURE WORK 

Future research should investigate sophisticated 

feature selection methodologies using evolutionary 

algorithms or bat search algorithms to improve the 

robustness of the suggested model in software fault 

prediction. Moreover, integrating layered ensemble 

methodologies such as bagging, boosting, and 

stacking might enhance the dependability of 

predictions. These upgrades would facilitate the 

ongoing advancement of defect prediction models, 

improving their usefulness in practical software 

development contexts. 
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