
 ISSN 2277-2685

 IJESR/April-June. 2025/ Vol-15/Issue-2s/799-805

Nandari Sai Nikitha et. al., / International Journal of Engineering & Science Research

799

Smart Ensemble Approach For Software Defect Prediction
A V S Radhika1 , Nandari Sai Nikitha2, Ballure Suprathika3.

1Assistant Professor, Department of CSE, Bhoj Reddy Engineering College or Women.

2,3B. Tech Students, Department of CSE, Bhoj Reddy Engineering College for Women.

ABSTRACT Software defect prediction is essential

for improving software quality and reducing testing

costs. The main goal is to detect and forward just

faulty modules to the testing phase. This study

presents an advanced ensemble-based model for

software fault prediction that integrates many

classifiers. The suggested approach utilizes a two-

stage prediction technique to identify damaged

modules. Initially, four supervised machine learning

techniques are utilized: Random Forest, Support

Vector Machine, Naïve Bayes, and Artificial Neural

Network. These algorithms undergo repeated

parameter optimization to get maximal accuracy. In

the subsequent phase, the predicted accuracy of the

different classifiers is amalgamated into a voting

ensemble to get the final predictions. This ensemble

method enhances the precision and dependability of

fault forecasts. Seven historical defect datasets from

the NASA MDP repository, namely CM1, JM1,

MC2, MW1, PC1, PC3, and PC4, were used to

develop and assess the suggested defect prediction

system. The findings indicate that the suggested

intelligent system for each dataset attained

exceptional accuracy, surpassing twenty advanced

defect prediction approaches, including base

classifiers and ensemble algorithms.

Keywords: Machine learning, software defect

prediction, heterogeneous classifiers, random

forest, support vector machine, naïve Bayes.

INTRODUCTION

Accelerated globalization has converted our globe

into an interconnected village, with the software

sector playing a pivotal role in advancing

development. In today's digitally networked world,

software applications have become essential to our

global civilization, underpinning everyday

activities, companies, and crucial infrastructure.

This effect has strengthened, especially during the

COVID-19 epidemic, which has expedited our

dependence on online platforms for communication,

trade, and distant labor.

In a Software Development Life Cycle (SDLC), the

workflow from the development team to the Quality

Assurance (QA) team often encompasses many

phases. The development team first delivers the

software code to the QA team for testing. The QA

team meticulously assesses the program, detecting

and documenting errors or problems. The iterative

feedback loop between development and quality

assurance continues until a high-quality, defect-free

program is achieved.

The product is attained [6], [7]. Figure 1 illustrates

the process from the Development team to the QA

team inside the Software Development Life Cycle

(SDLC). Nonetheless, achieving defect-free

software presents significant obstacles. Three

pivotal aspects that significantly impact software

quality assurance are time, financial resources, and

the availability of proficient personnel. The

industry's increasing demand requires the

development of efficient testing methodologies to

maximize precious resources while upholding the

highest standards of software quality [8].

This is where software defect prediction (SDP)

assumes prominence. Software Defect Prediction

 ISSN 2277-2685

 IJESR/April-June. 2025/ Vol-15/Issue-2s/799-805

Nandari Sai Nikitha et. al., / International Journal of Engineering & Science Research

800

(SDP) involves using historical data and machine

learning (ML) methodologies to anticipate and

detect probable flaws in software systems prior to

the testing process [9]. It examines the intricate array

of software parameters, including code complexity,

size, and historical defect data, to develop models

that can assess the probability of problems [10].

The incorporation of software defect prediction

alters the conventional development-to-QA process.

The feedback loop is modified by proactively

detecting possible flaws prior to the testing phase.

The predictive insights enable developers to identify

and resolve possible problems prior to the software's

delivery to the QA team. This procedure optimizes

efficiency and diminishes the conventional

exchanges between development and QA. This

transition fosters a more efficient and economical

software development life cycle [11]. Figure 2

illustrates a visual depiction of the diminished

feedback loop resulting from the implementation of

the SDP model.

In the realm of software defect prediction,

classification approaches are crucial. They include

classifying data into categories or labels, making

them very essential for detecting possible software

problems. Classification approaches include

decision trees, logistic regression, support vector

machines, among others [12], [13]. These strategies

facilitate the proactive evaluation and resolution of

software quality issues. Historically, several

research have used classification approaches to

improve the precision of defect prediction models.

Nonetheless, previous research in this domain

exhibits limitations, including issues associated with

classification methodologies, overfitting, and

underfitting [14].

FIGURE 1. Development-to-QA workflow in SDLC.[1]

 ISSN 2277-2685

 IJESR/April-June. 2025/ Vol-15/Issue-2s/799-805

Nandari Sai Nikitha et. al., / International Journal of Engineering & Science Research

801

Alongside classification, Ensemble Modeling (EM)

has developed as a promising approach that

amalgamates predictions from various machine

learning models to enhance overall performance

[15]. Ensemble approaches, such bagging, boosting,

stacking, and random forest, enhance the field by

addressing intrinsic problems [15]. Ensemble

approaches mitigate the hazards of overfitting,

underfitting, and biases inherent in individual

classifiers by consolidating the predictions of

numerous base classifiers. They have shown their

value in improving the accuracy and resilience of

defect prediction models by mitigating the inherent

biases of individual classifiers [16], [17].

Researchers have faced a common obstacle: the

intrinsic vulnerability of ensemble approaches to

biases that might affect their effectiveness [18], [19].

Figure 3 provides a summary of software fault

prediction with machine learning approaches.

FIGURE 2. Development-to-QA workflow using SDP.[1]

LITERATURE REVIEW

Authors in [3] created an intelligent cloud-based

SDP system that integrates data fusion with

decision-level machine learning fusion

methodologies. The system amalgamated predicted

performance from three classifiers: naïve Bayes

(NB), artificial neural network (ANN), and decision

tree (DT) using a fuzzy logic-based fusion approach.

The suggested system, assessed using NASA

information, surpassed other methodologies and

sought to attain high-quality software with reduce

expenses. A comprehensive comparative analysis of

multiple classifiers was performed regarding

software defect prediction [23]; the authors

examined ten machine learning algorithms, namely

 ISSN 2277-2685

 IJESR/April-June. 2025/ Vol-15/Issue-2s/799-805

Nandari Sai Nikitha et. al., / International Journal of Engineering & Science Research

802

Decision Tree, Naive Bayes, K-Nearest Neighbor,

Support Vector Machine, Random Forest, Extra

Trees, Adaboost, Gradient Boosting, Bagging, and

Multi-Layer Perceptron. The investigation used

benchmark NASA datasets from the PROMISE

repository, including CM1, KC1, KC2, JM1, and

PC1. The experimental findings indicated that the

used algorithms attained superior average accuracy

rates on the PC1 dataset. The Random Forest

classifiers with the PCA method demonstrated

enhanced average performance across the datasets.

Figure 4 depicts the categorization procedure.

In [24], the authors tackled the issue of handling a

substantial quantity of software defect reports in

software development and maintenance. A software

defect prediction (SDP) model using LASSO–SVM

was developed to enhance prediction accuracy. The

model integrated feature selection using the minimal

absolute value compression and selection approach

with the support vector machine algorithm. This

methodology significantly improved predictive

accuracy, with simulation outcomes demonstrating

an accuracy of 93.25% and 66.67%, a recall rate of

78.04%, and an f-measure of 72.72%. The suggested

model surpassed conventional approaches for

accuracy and speed. In [25], researchers introduced

a cloud-based system for real-time software fault

prediction, evaluating four back-propagation

training methods. Bayesian regularization (BR)

proved to be the most efficacious. The approach

used a fuzzy layer to determine the optimal training

function depending on performance metrics. NASA

datasets accessible to the public were used for

assessment, applying several metrics. The findings

indicated that BR surpassed other training

algorithms and commonly used machine-learning

methodologies.

The researchers in [26] used machine learning

techniques to evaluate the efficacy of varying tree

quantities in the RF method for software defect

prediction, using the RAPIDMINER machine

learning tool. They evaluated the efficacy of varying

quantities of trees inside the RF algorithm. The

findings demonstrate that augmenting the quantity

of trees marginally enhances accuracy, achieving a

peak accuracy of 99.59% and a nadir accuracy of

85.96%. The study emphasized the efficacy of the

RF algorithm in predicting software defects,

especially when using about one hundred trees.

METHODOLOGY

The suggested study presents an intelligent

ensemble-based methodology for software fault

prediction. This model employs several supervised

machine learning classifiers to improve accuracy.

The novel methodology seeks to effectively tackle

issues in forecasting software flaws. The outputs of

individual base classifiers are aggregated using a

voting ensemble model, effectively using the

advantages inherent in the proposed VESDP

approach. This ensemble method improves the

model's predictive capability by integrating many

classifier outputs, resulting in a more reliable and

precise software fault prediction. Figure 5 illustrates

an overview of the suggested paradigm. The

suggested VESDP model consists of two layers:

training and testing. The training layer has three

stages:

1) data preprocessing 2) base classification 3)

ensemble classification.

PERFORMANCE EVALUATIONL

In the aforementioned formulations, α λ denotes the

faulty modules in the software that were accurately

identified as defective by the model; conversely, α θ

signifies the non-defective modules in the software

 ISSN 2277-2685

 IJESR/April-June. 2025/ Vol-15/Issue-2s/799-805

Nandari Sai Nikitha et. al., / International Journal of Engineering & Science Research

803

that were properly classified as non-defective by the

model. The βλ and βθ values show a discrepancy

between actual and projected values. βλ implies that

the module was non-faulty however classified as

defective, while βθ signifies that the module was

defective yet classified as non-defective by the

model.

RESULTS AND DISCUSSION

This study created a voting ensemble-based software

defect prediction model (VESDP). Seven publicly

available NASA datasets (CM1, JM1, MC2, MW1,

PC1, PC3, and PC4) were retrieved from the MDP

repository to conduct the tests. During the

preparation phase, the datasets underwent three sub-

activities: partitioning, cleansing, and

normalization. The partitioning process splits the

datasets into two subsets, namely training and

testing, at a ratio of 70:30 according to the class-

based splitting criterion [53]. Initially, four diverse

supervised classification methods, including RF,

SVM, NB, and ANN, were used to train the model.

The classifiers were repeatedly tuned until each

achieved the maximum accuracy for the used

datasets. The prediction accuracy of separate

classifiers is amalgamated using the voting

ensemble approach, hence enhancing the

performance of the proposed model. Eight

commonly used assessment metrics were employed

to assess performance [22], [54]. All performance

metrics have been obtained via a confusion matrix

generated by tools given by Python [23], [55]. The

outcomes derived from both the training and testing

datasets for each classifier are detailed below.

FIGURE 3. Comparison graph.[1]

 ISSN 2277-2685

 IJESR/April-June. 2025/ Vol-15/Issue-2s/799-805

Nandari Sai Nikitha et. al., / International Journal of Engineering & Science Research

804

CONCLUSION

Software defect prediction seeks to discover

erroneous modules prior to the testing process,

allowing for concentrated testing on those modules

most likely to have flaws. An effective defect

prediction model may save software development

expenses by reducing the resources allocated to

quality assurance operations during testing. This

paper suggested an intelligent ensemble approach

for software fault prediction. The model was

executed with benchmark datasets obtained from the

NASA defect repository. The proposed model

amalgamated the predicted accuracy of four diverse

supervised classifiers by the voting ensemble

classification approach. Eight performance metrics

were used for statistical analysis. A comparative

study was undertaken to demonstrate the efficacy of

the method used in the suggested model against

state-of-the-art techniques. The developed VESDP

model surpassed contemporary research and

demonstrated its efficacy in the software fault

prediction process.

LIMITATION OF PROPOSED MODEL

The training data substantially influences the

efficacy of any machine-learning model, including

ensemble models. The training dataset's

inconsistency, absence of data, or noise may

adversely impact the model's predictive capability.

The requirements, development methodologies, and

code used in software development are always

evolving. An ensemble model trained on historical

data may find it challenging to adjust to unforeseen

changes in project dynamics or novel development

paradigms. The algorithm analyzes historical data to

provide projections based on identified patterns.

Should the present task significantly diverge from

the projects inside the training dataset, the model's

efficacy may be compromised.

FUTURE WORK

Future research should investigate sophisticated

feature selection methodologies using evolutionary

algorithms or bat search algorithms to improve the

robustness of the suggested model in software fault

prediction. Moreover, integrating layered ensemble

methodologies such as bagging, boosting, and

stacking might enhance the dependability of

predictions. These upgrades would facilitate the

ongoing advancement of defect prediction models,

improving their usefulness in practical software

development contexts.

REFERENCES

[1] Misbah Ali, Tehseen Mazhar, Yasir Arif, Shaha

Al-Otaibi, (Member, Ieee), Yazeed Yasin

Ghadi, Tariq Shahzad5, Muhammad Amir

Khan6, And Habib Hamam, (Senior Member,
IEEE) Software Defect Prediction Using an
Intelligent Ensemble-Based Model, VOLUME
12, 2024, DOI
10.1109/ACCESS.2024.3358201, IEEE
ACCESS.

[2] Z. M. Zain, S. Sakri, and N. H. A. Ismail,

‘‘Application of deep learning in software

defect prediction: Systematic literature

review and meta- analysis,’’ Inf. Softw.

Technol., vol. 158, Jun. 2023, Art. no.

107175, doi:

10.1016/j.infsof.2023.107175.

[3] M. Unterkalmsteiner et al., ‘‘Software

startups—A research agenda,’’ 2023,

arXiv:2308.12816.

[4] S. Aftab, S. Abbas, T. M. Ghazal, M.

Ahmad, H. A. Hamadi, C. Y. Yeun, and

M. A. Khan, ‘‘A cloud-based software

defect prediction system using data and

decision-level machine learning fusion,’’

 ISSN 2277-2685

 IJESR/April-June. 2025/ Vol-15/Issue-2s/799-805

Nandari Sai Nikitha et. al., / International Journal of Engineering & Science Research

805

Mathematics, vol. 11, no. 3, p. 632, Jan.

2023, doi: 10.3390/math11030632.

[1] S. Goyal, ‘‘Heterogeneous stacked

ensemble classifier for software defect

prediction,’’ in Proc. 6th Int. Conf.

Parallel, Distrib. Grid Comput. (PDGC),

Waknaghat, India, Nov. 2020, pp. 126–130,

doi: 10.1109/PDGC50313.2020.9315754.

[2] S. Mehta and K. S. Patnaik, ‘‘Stacking

based ensemble learning for improved

software defect prediction,’’ in Proc.

5th Int. Conf. Microelec- tron.,

Comput. Commun. Syst., vol. 748,

2021, pp. 167–178.

[3] M. Shafiq, F. H. Alghamedy, N.

Jamal, T. Kamal, Y. I. Daradkeh,

and M. Shabaz, ‘‘Retracted: Scientific

programming using optimized

machine learning techniques for

software fault prediction to improve

software quality,’’ IET Softw., vol. 17,

no. 4, pp. 694–704, Jan. 2023, doi:

10.1049/sfw2.12091.

[4] Y. Tang, Q. Dai, M. Yang, T. Du, and

L. Chen, ‘‘Software defect prediction

ensemble learning algorithm based on

adaptive variable sparrow search

algorithm,’’ Int. J. Mach. Learn.

Cybern., vol. 14, no. 6, pp. 1967–1987,

Jan. 2023, doi: 10.1007/s13042-022-

01740-2.

[5] S. Goyal, ‘‘3PcGE: 3-parent child-

based genetic evolution for software

defect prediction,’’ Innov. Syst. Softw.

Eng., vol. 19, no. 2, pp. 197–216, Jun.

2023, doi: 10.1007/s11334-021-

00427-1.

[6] J. Liu, J. Ai, M. Lu, J. Wang, and

H. Shi, ‘‘Semantic feature learning

for software defect prediction from

source code and external knowledge,’’

J. Syst. Softw., vol. 204, Oct. 2023, Art.

no. 111753, doi:

10.1016/j.jss.2023.111753.

[7] A. K. Gangwar and S. Kumar,

‘‘Concept drift in software defect

prediction: A method for detecting and

handling the drift,’’ ACM Trans.

Internet Technol., vol. 23, no. 2, pp. 1–

28, May 2023, doi: 10.1145/3589342.

[8] M. S. Alkhasawneh, ‘‘Software defect

prediction through neural network and

feature selections,’’ Appl. Comput.

Intell. Soft Comput., vol. 2022,

pp. 1–16, Sep. 2022, doi:

10.1155/2022/2581832.

[9] T. F. Husin and M. R. Pribadi,

‘‘Implementation of LSSVM in

classification of software defect

prediction data with feature

selection,’’ in Proc. 9th Int. Conf.

Electr. Eng., Comput. Sci. Informat.

(EECSI), Jakarta, Indonesia, Oct.

2022, pp. 126–131, doi:

10.23919/EECSI56542.2022.

9946611.

