
 ISSN 2277-2685

 IJESR/April-June. 2025/ Vol-15/Issue-2s/753-759

B Keerthi et. al., / International Journal of Engineering & Science Research

753

Andriod Malware Detection

Ms AVS Radhika1, B Keerthi2, N Keerthi3

1Assistant Professor, Department of CSE, Bhoj Reddy Engineering College for Women, India.
2,3B.Tech Students, Department of CSE, Bhoj Reddy Engineering College for Women, India.

Abstract

Malware is one of the major issues regarding the

operating system or in the software world. The

android system is also going through the same

problems. We have seen other Signaturebased

malware detection techniques were used to detect

malware. But the techniques were not able to detect

unknown malware. Despite numerous detection and

analysis techniques are there, the detection accuracy

of new malware is still a crucial issue. We propose

Machine learning algorithms that will be used to

analyse such malware and also we will be doing

semantic analysis. We will be having a data set of

permissions for malicious applications. This will be

compared with the permissions extracted from the

application which we want to analyse. In the end, the

user will be able to see how much malicious

permission is there in the application and also we

analyse the application through comments.

Introduction

In today’s fast-paced world, ensuring the security of

Android devices has become increasingly important

due to the growing number of malicious

applications. Android’s open-source nature and

popularity make it a prime target for malware

writers, posing significant threats to users by

exploiting sensitive data or gaining unauthorized

control over devices. To tackle this issue, the

development of an Android Malware Detection

System using genetic algorithm-based feature

selection and machine learning has been undertaken

as a mini project. This system aims to efficiently

detect malware by combining advanced feature

selection with optimized machine learning models,

providing a reliable solution for zero-day malware

detection.

Proposed System

The methodology involves reverse engineering two

sets of Android Apps (Malware and Goodware) to

extract features such as permissions and counts of

app components (Activity, Services, Content

Providers, etc.) from their AndroidManifest.xml

files. These features, represented as a feature vector

with class labels (0 for Malware and 1 for

Goodware), are stored in CSV format. To reduce the

dimensionality, a Genetic Algorithm is used to select

the most optimized set of features. This optimized

feature set is then used to train two machine learning

classifiers: Support Vector Machine (SVM) and

Neural Network (NN).

Literature Survey

[1] Drebin: A Lightweight and Explainable Malware

Detection System (D. Arp et al., 2014)

This paper introduces Drebin, a static analysis-based

system for Android malware detection that does not

require running the app. The system extracts key

features such as app permissions and API calls from

the APK file and uses a Support Vector Machine

(SVM) for classification. Drebin operates directly

on mobile devices, making it efficient and suitable

for smartphones with limited computational

resources. It also provides transparency by

explaining the reasoning behind the detection of

malicious apps. The study highlights Drebin's ability

 ISSN 2277-2685

 IJESR/April-June. 2025/ Vol-15/Issue-2s/753-759

B Keerthi et. al., / International Journal of Engineering & Science Research

754

to offer high accuracy while maintaining speed and

clarity in detection, especially on mobile platforms.

[2] Comparative Study of Machine Learning

Methods for Malware Classification (N.

Milosevicetal.,2017).This research compares

several machine learning algorithms, including

Decision Trees, Naive Bayes, and SVM, to

determine the most effective method for Android

malware detection. The study focuses on using app

features such as permissions and services. The

results reveal that machine learning techniques

outperform traditional signature-based approaches

in terms of both accuracy and detection rates. The

authors emphasize the importance of feature

selection in improving model performance and the

need to avoid overfitting to achieve better

generalization. This work demonstrates the potential

of machine learning to enhance Android app

security.

[3] Permission-Based Feature Selection for Efficient

Malware Detection (J. Li et al., 2018)

This paper introduces a method for selecting the

most significant permissions in Android apps to

improve malware detection. Rather than using all

available permissions, the study proposes focusing

on those with the highest impact on classification

performance. The results show that this selective

approach not only enhances detection accuracy but

also reduces computational complexity. The authors

validate their method through experiments with

various machine learning models, demonstrating

that permission-based feature selection leads to

faster and more efficient malware detection without

sacrificing accuracy.

[4] MADAM: Real-Time Behavior-Based Malware

Detection (A. Saracino et al., 2018)

MADAM is a hybrid malware detection system that

monitors both user and app behavior in real-time to

identify malicious activity. Unlike cloud-based

systems, MADAM operates directly on Android

devices, providing an efficient and resource-

conserving solution. The system analyzes

interactions between the user and the app, as well as

internal app operations, to detect potential threats.

MADAM is designed to minimize false positives,

making it highly effective for mobile deployment.

This approach demonstrates a lightweight, real-time

detection system that is ideal for resource-

constrained mobile environments.

[5] SAMADroid: A 3-Level Hybrid Detection

Framework (S. Arshad et al., 2018)

SAMADroid is a hybrid detection framework that

integrates static analysis, dynamic analysis, and

signature-based methods to provide comprehensive

Android malware detection. The three-layered

approach leverages the strengths of each technique,

improving detection accuracy and reducing the

number of false alarms. The system is tested on a

wide range of Android applications and consistently

outperforms standalone methods. SAMADroid’s

integrated framework enhances its ability to detect a

broader spectrum of malware types, making it a

robust solution for Android security. The study

highlights SAMADroid's superior performance

compared to traditional detection methods.

Methodology

The Android malware detection system is developed

using a data-driven and modular approach that

ensures high detection accuracy through feature-rich

datasets and machine learning techniques. The

methodology is divided into the following key

components:

System Architecture

The system is designed using a layered architecture:

 DataLayer:

Utilizes a labeled dataset containing both

benign and malicious Android

 ISSN 2277-2685

 IJESR/April-June. 2025/ Vol-15/Issue-2s/753-759

B Keerthi et. al., / International Journal of Engineering & Science Research

755

applications. Each application includes

static features like permissions, API calls,

intent filters, and components extracted

from the APK files.

 Processing Layer:

o Data Preprocessing: Involves

removing redundant entries,

handling missing values,

encoding categorical features, and

scaling numerical data.

o Feature Selection: Identifies the

most relevant features (e.g.,

suspicious permissions or API

calls) using correlation analysis or

chi-square tests to improve model

performance and reduce

overfitting.

 Modeling Layer:

o Implemented using Python

libraries such as Pandas, NumPy,

Scikit-learn, and Matplotlib.

o Multiple classifiers are applied,

including Support Vector

Machine (SVM), Decision Tree,

Random Forest, and Neural

Networks, for comparative

analysis.

 Evaluation & Output Layer:

o Models are evaluated based on

metrics like accuracy, precision,

recall, F1-score, and confusion

matrix.

o Visualizations such as ROC

curves, bar graphs of feature

importance, and confusion

matrices are generated for

interpretability.

Workflow

1. Data Acquisition:

o Collect APK files from reliable

datasets such as Drebin or

VirusShare.

o Extract static features using

reverse engineering tools (e.g.,

Androguard or Apktool).

2. Data Preprocessing:

o Remove noise and duplicates.

o Encode permissions and features

as binary vectors. Normalize

numerical values if any.

3. Feature Selection:

o Use correlation or chi-square

analysis to retain only important

features.

o Drop irrelevant or redundant

attributes to reduce computation

time and improve model clarity.

4. Model Training:

o Split the dataset into training and

test sets (commonly 80:20).

o Train the selected machine

learning algorithms on the

training data.

5. Model Testing & Evaluation:

o Test the trained models on the

unseen data from the test set.

o Evaluate using metrics like

accuracy, recall (important in

malware detection), precision,

and F1-score.

6. Detection Output:

o Classify new applications as

either ‘Malware’ or ‘Benign’

based on extracted features.

o Display results along with the

model’s prediction confidence

and performance scores.

 ISSN 2277-2685

 IJESR/April-June. 2025/ Vol-15/Issue-2s/753-759

B Keerthi et. al., / International Journal of Engineering & Science Research

756

7. Result Interpretation:

o Use visual tools like bar graphs

(for feature importance),

confusion matrix heatmaps, and

ROC curves.

o Provide insights into which

features most influence the

classification decision.

Results

 Fig 1 Run the python code (app.py) from the terminal

 Fig 2 Home Page

 ISSN 2277-2685

 IJESR/April-June. 2025/ Vol-15/Issue-2s/753-759

B Keerthi et. al., / International Journal of Engineering & Science Research

757

 Fig 3 pload the Dataset

 Fig 4 Dataset is loaded

 ISSN 2277-2685

 IJESR/April-June. 2025/ Vol-15/Issue-2s/753-759

B Keerthi et. al., / International Journal of Engineering & Science Research

758

Fig 5 Click on Detect Malware & Predict the result Result Page showing Model Accuracy Results

Fig 6 Result Page showing Graphical Representation

Conclusion And Future Scope

Conclusion

The project titled "Android Malware

Detection Using Genetic Algorithm-Based

Optimized Feature Selection and Machine

Learning" provides a robust approach to

addressing malware threats in the Android

ecosystem. By combining static analysis

with machine learning classifiers, such as

 ISSN 2277-2685

 IJESR/April-June. 2025/ Vol-15/Issue-2s/753-759

B Keerthi et. al., / International Journal of Engineering & Science Research

759

Support Vector Machines (SVM) and

Neural Networks (NN), the project

improves detection accuracy. The use of

Genetic Algorithms (GA) for feature

selection enhances the efficiency of these

classifiers, reducing dimensionality and

enabling better performance. With its user-

friendly GUI and integration of advanced

algorithms, the system demonstrates

significant promise in detecting zero-day

threats and protecting users against

malicious applications.

 Future Scope

Adding interactive visualizations, real-time

logs, and customizable settings. Expanding

to iOS malware detection, using advanced

AI techniques like federated learning and

explainable AI, and enabling real-time

detection will enhance functionality.

Features like malware removal

suggestions, notifications, and integration

with threat intelligence improve usability.

Blockchain, zero-day detection, edge

computing, and industry collaboration

ensure scalability, security, and innovation.

REFERENCES

[1] D. Arp, M. Spreitzenbarth, M.

Hübner, . Gascon, and K. Rieck, “Drebin:

Effective and Explainable Detection of

Android Malware in Your Pocket,” in

Proceedings 2014 Network and Distributed

System Security Symposium, 2014

[2] N. Milosevic, A. Dehghantanha, and K.

K. R. Choo, “Machine learning aided

Android malware classification,” Comput.

Electr. Eng., vol. 61, pp. 266–274, 2017.

[3] J. Li, L. Sun, Q. Yan, Z. Li, W. Srisa-

An, and H. Ye, “Significant Permission

Identification for Machine-Learning-Based

Android Malware Detection,” IEEE Trans.

Ind. Informatics, vol. 14, no. 7, pp. 3216–

3225, 2018.

[4] A.Saracino, D. Sgandurra, G. Dini,

and F. Martinelli, “MADAM: Effective and

Efficient Behavior-based Android Malware

Detection and Prevention,” IEEE Trans.

Dependable Secur . Comput., vol. 15, no. 1,

pp. 83–97, 2018.

[5] S. Arshad, M. A. Shah, A. Wahid, A.

Mehmood, H. Song, and H. Yu,

“SAMADroid: A Novel 3-Level Hybrid

Malware Detection Model for Android

Operating System,” IEEE Access, vol. 6,

pp. 4321–4339, 2018.

