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ABSTRACT 

Wireless communication networks are advancing at a 

rapid pace, driven by various challenges and ambitious 

goals. This rapid growth is driven by a range of 

applications, including technologies like the Internet 

of Things (IoT), as well as innovations in smart 

cities, autonomous vehicles, and more. Different 

applications demand specific performance criteria 

such as high data throughput, low latency, robust 

reliability, and efficient energy usage. In this thesis, 

we investigate two enhancements that can be adopted 

in wireless networks to tackle the challenges of 

resource optimization and network management. 

The motivation behind this is the fact that future 

networks will face challenges like severe congestion 

and varying traffic demands. The objective is to 

achieve higher network throughput and more data 

transmission by adjusting the network parameters. 

The first proposed approach introduces an enhanced 

self-optimization framework using deep 

reinforcement learning (RL) to dynamically adjust 

network parameters such as handover parameters, 

power levels, and MIMO technology. The proposed 

approach offers significant gains in network 

throughput by effectively balancing the load 

distribution. The proposed framework explores the 

trade-off between system complexity and 

performance improvement, demonstrating that 

adopting a scenario-aware optimized agent can 

outperform generalized agents under specific 

network conditions. The second approach we tackle 

is to adopt a proactive concept while controlling the 

network. The proposed approach is based on the 

ARIMA model used to predict the next states of the 

environment so that the RL agent considers them in 

the decision-making process. The simulation results 

demonstrate that the proposed approach leads to 

higher throughput and improved network 

performance, which underscores its potential as a 

robust alternative to the conventional agent existing 

in earlier works. 

 

1-INTRODUCTION 

Wireless communication is essential to our daily life, 

education, business, and leisure. There are 

communication systems all around us. For example, 

smart homes, surveillance, industry, and health care 

all employ wireless sensor networks, or WSNs. Cell 

phones, smartphones, smart TVs, outdoor internet, 

and other devices also use mobile networks. 

Additionally, WiFi is utilized to establish indoor 

internet connections and small networks. Moreover, 

the Internet of Things (IoT) has emerged as a 

transformative force across industries, enabling 

advancements in fields such as manufacturing, 

agriculture, transportation management, and home 

automation. IoT tech- nologies facilitate real-time 

data collection and analysis, leading to smarter 

decision-making and operational efficiencies. As 

communication technologies continue to evolve, new 

protocols and infrastructures are being developed to 

meet the increasing demand for seamless 

connectivity. 5G networks aim to enable massive 

connectivity and provide data rate speeds of 10 Gbps 
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for low mobility and 1 Gbps for high mobility [1]. 

Global mobile data traffic is expected to reach 

around 160 exabytes (a thousand billion GB) per 

month in 2025 [2]. This increase in traffic re- quires 

significant optimization at the network level. With 

the huge number of devices, a lot of handover 

requests are initiated in order to keep the user’s QoE 

unaffected. These handover pro- cesses should be 

reliable and seamless so as not to impact the user’s 

connection or the quality served. The Network is 

also required to reduce delay in order to support real-

time applications like real-time video streaming, 

online gaming, video conferencing, etc. Managing 

such highly dense networks requires proper 

allocation of network resources. As high traffic 

loads have be- come a primary concern in the design 

and operation of wireless communication systems, 

wire- less systems serve a huge number of devices 

with the aim of providing ubiquitous connectivity 

and extremely high data rates not only for mobile 

phones but also for all newly emerged IoT de- vices 

distributed across a given area [3]. In order to serve a 

massive number of terminals, future networks will 

have serious congestion concerns. Network 

operators will have to provide more network 

resources in a timely manner to maintain good 

Quality of service (QoS) and Quality of experience 

(QoE) for users. 

 

2-BACKGROUND AND CONCEPTS 

In this chapter, we present a background of the main 

terminologies and concepts utilized in this thesis. 

We start by discussing Open Radio Access 

Networks (ORAN) as a key enabler for machine 

learning algorithms that will be used afterwards. In 

section 2.1, we present the machine learning 

algorithms that will be used in our methodology 

including two main algorithms, Double Deep Q-

Learning (DDQG) and Twin Delayed Deep 

Deterministic Policy Gradient (TD3). Then, in the last 

section, an explanation of the forecasting algorithm 

used in Chapter 4 will be introduced. 

Open Radio Access Networks (O-RAN) 

Traditional cellular networks have been around for 

decades. Much development has been done in the 

area of wireless communication that enhanced the 

quality and overall performance of the 

communication process. Newly developed 

technologies have been introduced like the en- 

hanced mobile broadband (eMBB), massive machine-

type communications (mMTCs), and ultra- reliable 

low-latency communications (URLLCs) [5]. 

However, cellular network infrastructural devices 

were always proprietary hardware and software 

solutions, usually implemented by the same vendor 

to enable a good match for a proper communication 

process. This forced operators to rely on a single 

vendor for all their network needs. They, thus, 

guaranteed compatibility and interoperability based 

on the operators’ needs at a price of limited 

innovation and creativity in designing the network. 

Recently, O-RAN concepts were introduced to foster 

innovation and competition and facilitate flexible 

RAN deployments. Key components of O-RAN 

networks include cloudification, intel- ligence, 

automation, and open internal RAN interfaces. O-

RAN is envisioned to introduce a 

paradigm shift in RAN networks by promoting 

interoperability. 

Our primary concern in this thesis is related to 

intelligence and automation. One major use case for 

O-RAN, according to the whitepaper [6] introduced 

by the O-RAN alliance, is the conges- tion 

prediction and management. This resulted from the 

loads in modern 4G-5G networks, the fluctuating 

amount of moving cellular traffic and severe cell 

congestion that leads to a poor user experience due to 
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radio link failures, handover failures, low data rates, etc. 

 

FIgURE 2.1: O-RAN Logical Architecture 

 

3-SCENARIO-AWARE REINFORCEMENT 

LEARNING AGENT FOR MIMO USAGE 

OPTIMIZATION 

In this chapter, we build upon the methodology 

presented in [4] to enhance the proposed approach and 

achieve performance improvements. RL is selected 

due to its effectiveness in optimizing long-term 

objectives without requiring training data. The work 

in [4] introduced a robust framework for self-

optimizing cellular networks through deep 

reinforcement learning, aiming to improve network 

efficiency by balancing user load, enhancing 

coverage, improving user experience, and 

minimizing energy consumption. The proposed 

system incorporates a DDQN agent followed by a 

TD3 agent for fine-tuning handover settings, power 

allocations, and MIMO configurations. In this 

chapter, we refine the RL agents presented in [4] by 

incorporating an additional continuous-action TD3 

agent specifically designed for a frequent, recurring 

scenario. During simulations, a particular DDQN 

decision state appeared more frequently than others. 

We accounted for this scenario during training and 

adjusted the relevant power and CIO values using the 

TD3 agent according to the network need. The 

inclusion of this specialized agent led to noticeable 

performance gains when the corresponding scenario 

occurred. However, this design results in three 

agents overall, increasing system complexity by 

having an additional agent, especially if multiple 

frequent scenarios exist. Despite this, the 

improvement in the overall network reward justifies 
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the added complexity. Thus, a trade-off exists 

between the number of agents employed and the 

performance benefits achieved. The scenario-aware 

agent demonstrates enhanced performance 

compared to the general agent in [4] when 

optimizing network parameters, making it a 

compelling choice for self-optimization in networks 

where certain scenarios are more prevalent. 

Proposed Algorithm 

In this section, we provide a thorough explanation of 

the suggested algorithm. 

The proposed scheme is outlined in the following 

Algorithm 1, where 𝑠(𝑡) is the observed state at time 𝑡, 

𝑎𝑀 (𝑡) is the MIMO enabling action vector, 𝑎𝐶 (𝑡) is the 

CIO values action vector and 

𝑎𝑃 (𝑡) is the transmitted powers action vector. 

Algorithm 1 Proposed RL framework 

Determine Reward Function. Reset all values. 

Repeat 

procedure STAgE OnE Observe State (𝑠(𝑡)). 

Select MIMO feature decision (DDQN) (𝑎𝑀 (𝑡)). 

Create a new augmented state (𝑠𝑎𝑢𝑔 (𝑡) = [𝑠(𝑡), 𝑎𝑀 (𝑡)]). 

end procedure 

procedure STAgE TWO 

Observe state (𝑠𝑎𝑢𝑔 (𝑡)) and select the proper TD3 agent 

according to 𝑎𝑀 (𝑡) 

Select relative CIO and power level actions (TD3) ([𝑎𝐶 

(𝑡), 𝑎𝑃 (𝑡)]) 

Apply augmented action to the network 𝑎𝑎𝑢𝑔 = [𝑎𝐶 (𝑡), 𝑎𝑃 

(𝑡), 𝑎𝑀 (𝑡)]. 

end procedure 

Calculate Reward. 

Calculate the next state. 

 

Decision-making occurs in two stages: 

• First Stage: Based on the DDQN approach, the agent 

watches the state and decides when to turn MIMO 

ON or OFF [38]. The discrete set {0, 1} is used as 

an action space (for each eNB). Keep in mind that 

the selected action is not applied to the surroundings 

until the second stage is complete. 

• Second Stage: Based on the output of the first stage, 

a TD3 agent is selected to take the second stage 

decision. We augment the first-stage action with the 

observed state. The second stage decides the CIO 

and the variation in power level actions based on the 

TD3 

 

 

FIgURE 3.2: An Overview of the Decision-Making Process. 

 

4-PROACTIVE CONGESTION PREDICTION AND OPTIMIZATION IN CELLULAR 
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NETWORKS 

Recently, there have been several rapid changes in 

cellular networks [46]. For example, depending on 

current events, the number of users fluctuates 

significantly over time. Due to sudden fluctuations 

in metropolitan areas, the coverage requirements 

also vary. Within the last few years, providing high 

data rates that can support different applications has 

become a ubiquitous necessity. Cellular networks 

must be flexible enough to satisfy the new demands 

and handle the quick changes that are always 

occurring. Additionally, a criterion needs to be 

established to ensure that the network won’t be 

disrupted by these quick adjustments. In other 

words, achieving network balance is essential. This 

will enable the network to self-heal from any certain 

issues and provide immunity against changes in the 

surrounding environment. 

By automating the optimization and management of 

wireless mobile networks, it is possible to improve 

user experience and lower operating costs for 

network operators. Currently, a lot of network 

administration tasks require human intervention, 

from diagnosing customer problems to running drive 

testing to assess network performance and coverage 

[47]. We support the claim that machine learning 

methods can help with these duties by assisting in 

the diagnosis and prediction of network problems 

before they significantly impair network users’ 

quality of service. Most of the interactions from 

operators with the cellular network are reactive 

actions. Network KPIs are being monitored, and once 

they are impacted, operators take the proper action to 

overcome this performance degradation. Controlled 

lab tests are the traditional method for evaluating 

network and service performance from the viewpoint 

of QoE end users [48]. Network operators aim to 

address network congestion through various 

strategies to ensure a positive user experience. 

However, these congestion mitigation approaches 

are typically reactive, leaving 

 

the network vulnerable to performance degradation 

and negatively impacting user satisfaction. 

Overcoming sudden changes in the network should be 

in a timely manner to avoid out-of-service errors. 

Sufficient resources should be available to be 

allocated or correct handover decisions should be 

taken on the spot to provide an acceptable level of 

service availability. 

SONs are being studied in literature to do automatic 

mitigation actions by continuous monitoring and 

updating network parameters without the need for 

human intervention. Our main focus here is 

congestion awareness and mitigation prior to 

occurrence using a part of the O-RAN architecture 

called Congestion Prediction Management (CPM) 

[6] that provides intelligent actions. This component 

of the network can be used to apply actions for the 

predicted congestion before it actually occurs. This 

is done through data collecting, data pre-processing, 

and then invoking an AI algorithm for future KPI 

prediction. After obtaining the prediction, it is then 

used to be part of the observation for the decision-

making process. We propose that being able to 

predict the next state of the environment and 

applying updates to network parameters while 

considering this prediction will result in a better 

performance. In this chapter, we aim to establish an 

integrated algorithm for both prediction and 

optimization processes to produce an optimizing 

agent for congestion control. After this, we 

investigate the effect of this agent on the environment 

and network performance. 

 

5-CONCLUSION 

In this thesis, we explored two main enhancements 
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for the cellular network. The first one we studied is 

the scenario-aware RL agent’s performance, in 

which the environment is observed to turn the MIMO 

feature ON most of the time. We use a TD3 agent that 

is trained to only optimize the decision for this 

specific scenario. Using this scenario-aware agent 

when all the eNBs are enabling the MIMO feature, 

while using the original RL agent that is trained to 

optimize all scenarios of the observed environment. 

The case where all eNBs enable the MIMO scheme 

was selected due to its frequent occurrence during 

the environment simulation. The added agent works 

along with the conventional agent to provide better 

performance when each is used in the case for which 

it was trained. This suggestion yields a better 

performance and higher downlink throughput which 

will give the end users a better quality of experience. 

Whilst, it introduces some intricacy to the design. 

This trade-off should be assessed by system designers 

according to the environment conditions to adopt the 

new approach when a case occurs much more 

frequently than others. Specializing an agent for this 

case will result in better results for the agent’s actions. 

While the thesis demonstrates the benefits of 

scenario-specific RL agents, future work should 

focus on exploring scalability across diverse and 

dynamic cellular network conditions. 

The second suggested enhancement is introducing a 

proactivity factor by optimizing the RL agent’s 

decision while considering the future expected state of 

the environment. The agent’s state contains the 

predicted value of the DL throughput in the next 5 15-

minute spans. This allows the agent to be able to 

foresee the correct action to apply to the environment 

while acknowledging the predicted value by the 

ARIMA algorithm. The environment has dynamic 

user loads to present an increase in the network 

traffic. Taking this into consideration while 

training and 

 

6-RESULTS 

In this section, we assess the performance of our 

proposed approach by testing the effect of different 

hyperparameters on the sum throughput of the 

network. Testing scenarios are as follows: 

1. MIMO always on with penalty on the 

user coverage: We employ a RL agent to optimize 

the CIOs and power levels only. We switch on the 

MIMO feature at all times for all eNBs and use a 

penalty on uncovered users with 𝜂 = 2 in equation 

(3.5). This setup allows us 

 

to compare the performance of both agents in the 

same environment, when all eNBs are forced to 

keep MIMO on, to observe the agents’ performance 
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in this specific case. We plot the network sum 

throughput (in Mbps) versus steps in Fig. 3.5 across 

a testing episode of 250 steps. The difference 

between both models is mostly around 4𝑀𝑏𝑝𝑠. 

FIgURE 1: Comparison of the sum throughput reward for the MIMO-on agent and original agent 𝜂 = 2 

 

 

 

 

FIgURE 2: Comparison of the sum throughput reward for the all-MIMO-ON agent and original agent 𝜂 = 0 

 

2. MIMO on/off with no penalty on the user coverage: 

In this approach, the DDQN agent first decides 

whether to enable the MIMO feature on all eNBs. 

If MIMO is enabled for all eNBs, the scenario-

aware TD3 agent (trained specifically for this all-

MIMO-on setting) handles the continuous actions 

for CIO and transmitted power. Otherwise, the 

conventional TD3 agent from [4] is used to select 

the CIO and power values. The results of this case 

are shown in Fig. 3.7. 
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FIgURE 3: Average throughput per step over 20 episodes while alternating between conventional and all-MIMO-

ON agents, 𝜂 = 0 
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