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ABSTRACT 

Design Of Power Efficient POSIT Multiplier 

Abstract Posit number system has been used as an 

alternative to the IEEE floating-point number 

system in many applications, especially the recent 

popular deep learning. Its non-uniformed number 

distribution fits well with the data distribution of 

deep learning and thus can speed up the deep 

learning training process. Among all the related 

arithmetic operations, multiplication is one of the 

most frequent operations used in applications. 

However, due to the bit-width flexibility nature of 

posit numbers, the hardware multiplier is usually 

designed with the maximum possible mantissa bit- 

width. As the mantissa bit-width is not always the 

maximum value, such multiplier design leads to a 

high power consumption especially when the 

mantissa bit-width is small. In this brief, a power- 

efficient posit multiplier architecture is proposed. 

The mantissa multiplier is still designed for the 

maximum possible bit-width however, the whole 

multiplier is divided into multiple smaller 

multipliers. Only the required small multipliers are 

enabled at run-time. Those smaller multipliers are 

controlled by the regime bit-width which can be 

used to determine the mantissa bit-width. This 

design technique is applied to 8-bit, 16-bit, and 32- 

bit posit formats in this brief, and an average of 16% 

power reduction can be achieved with negligible 

area and timing overhead. Power consumption 

distribution of a posit multiplier Posit component 

extraction in hardware arithmetic unit Datapath of 

the proposed posit multiplier. 

1- INTRODUCTION 

A power-efficient Posit multiplier is a key 

component in modern computing systems that 

leverages the advantages of the Posit number 

system, an emerging alternative to traditional 

floating-point representation. The Posit system 

provides higher accuracy, dynamic range, and 

efficiency for various computational tasks, making 

it particularly attractive for machine learning, 

scientific computing, and embedded systems. 

However, one of the main challenges in 

implementing Posit arithmetic, especially 

multiplication, is achieving high performance while 

minimizing power consumption. 

A power-efficient design of the Posit multiplier 

focuses on reducing energy usage without 

sacrificing the precision and speed that Posits offer. 

This involves optimizing the hardware architecture, 

utilizing techniques such as operand truncation, 

approximate computing, and advanced low-power 

design methods. By developing such a multiplier, 

designers aim to improve both computational 

efficiency and energy consumption, which is crucial 

for battery- powered and resource-constrained 

devices, as well as large-scale data centers where 

power is a critical concern. 

 

2- LITERATURE SURVEY 

In this section, some of the previous works in the 

field of approximate multipliers are briefly 

reviewed. In, an approximate multiplier and an 

approximate adder based on a technique named 

broken-array multiplier (BAM) were proposed. By 

applying the BAM approximation method of to the 
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conventional modified Booth multiplier, an 

approximate signed Booth multiplier was presented 

in. The approximate multiplier provided power 

consumption savings from 28% to 58.6% and area 

reductions from 19.7% to 41.8% for different word 

lengths in comparison with a regular Booth that 

saved the power by 31.8%–45.4% over an accurate 

multiplier. An approximate multiplier. Kulkarni et 

al. suggested an approximate multiplier consisting 

of a number of 2 × 2 inaccurate building blocks 

signed 32-bit multiplier for speculation purposes in 

pipelined processors was designed in. It was 20% 

faster than a full-adder-based tree multiplier while 

having a probability of error of around 14%. 

In, an error-tolerant multiplier, which computed the 

approximate result by dividing the multiplication 

into one accurate and one approximate part, was 

introduced, in which the accuracies for different bit 

widths were reported. In the case of a 12-bit 

multiplier, a power saving of more than 50% was 

reported. The use of approximate multipliers in 

image processing 

applications, which leads to reductions in power 

consumption, delay, and transistor count compared 

with those of an exact multiplier design, has been 

discussed in the literature. An accuracy- 

configurable multiplier architecture (ACMA) was 

suggested for error-resilient systems. To increase its 

throughput, the ACMA made use of a technique 

called carry-in prediction that worked based on a 

pre-computation logic. When compared with the 

exact one, the proposed approximate multiplication 

resulted in nearly 50% reduction in the latency by 

reducing the critical path. Also, Bhardwaj et al. 

presented an approximate Wallace tree multiplier 

(AWTM). Again, it invoked the carry-in prediction 

to reduce the critical path. In this work, AWTM was 

used in a real-time benchmark image application 

showing about 40% and 30% reductions in the 

power and area, respectively, without any image 

quality loss compared with the case of using an 

accurate Wallace tree multiplier (WTM) structure. 

Approximate unsigned multiplication and division 

based on an approximate logarithm of the operands 

have been proposed. In the proposed multiplication, 

the approximate logarithms' summation determines 

the operation's result. Hence, the multiplications are 

simplified to some shift and add operations. A 

method for increasing the accuracy of the 

multiplication approach was proposed. It was based 

on the decomposition of the input operands. This 

method considerably improved the average error at 

the price of increasing the hardware of the 

approximate multiplier by about two times. A 

dynamic segment method (DSM) is presented, 

which performs the multiplication operation on an 

m-bit segment starting from the leading one bit of 

the input operands. A dynamic range unbiased 

multiplier (DRUM) multiplier, which selects an m- 

bit segment starting from the leading one bit of the 

input operands and sets the least significant bit of 

the truncated values to one, has been proposed. 

In this structure, the truncated values are multiplied 

and shifted to left to generate the final output. An 

approximate 4 ×4 WTM has been proposed that uses 

an inaccurate 4:2 counters. In addition, an error 

correction unit for correcting the outputs has been 

suggested. To construct larger multipliers, this 4 × 

4 inaccurate Wallace multiplier can be used in an 

array structure. Most of the previously proposed 

approximate multipliers are based on either 

modifying the structure or complexity reduction of 

a specific accurate multiplier. In this paper, we 

propose performing the approximate multiplication 

through simplifying the operation. The difference 

between our work and the previous is that, although 

the principles in both works are almost similar for 

unsigned numbers, the mean error of our proposed 

approach is smaller. In addition, we suggest some 

approximation techniques when the multiplication 
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is performed for signed number. 

 

3- Mathematical Foundation and Architecture 

The mathematical foundation and architecture of 

posit multipliers are integral to understanding the 

advantages and operational efficiency of the posit 

number system in modern computing. This 

foundation's core lies in the mathematical principles 

governing posit numbers, specifically the regime, 

exponent, and fraction fields. These components 

allow posits to represent a wide range of values with 

dynamic precision, thus addressing many limitations 

inherent in traditional floating-point systems. In this 

section, we will break down the multiplication 

process within posit arithmetic, providing a step-by- 

step analysis that showcases how combining these 

fields enables efficient and accurate calculations. 

Furthermore, error analysis and accuracy 

considerations will be discussed, emphasizing the 

significance of rounding modes and exception 

handling in ensuring reliable computational 

outcomes. As we transition from the mathematical 

principles to the architecture of the posit multiplier, 

we will explore the specific structures and 

components that define its operation. This includes 

input handling, data flow, and output generation, 

along with the distinct roles played by various 

modules in the multiplication process. A 

comparison with floating-point multiplier 

architecture will illustrate how the posit multiplier 

achieves greater efficiency and precision, 

positioning it as a superior alternative in the context 

of energy-sensitive and high- performance 

computing applications. 

Software Requirement 

The software must facilitate efficient processing of 

posit numbers, incorporating error handling and 

optimization techniques to enhance computational 

speed and accuracy. Additionally, requirements for 

performance monitoring and power management 

features are essential to align with the project’s 

objectives of minimizing energy consumption. Clear 

and well-defined software requirements not only 

guide developers in creating robust applications but 

also help in managing expectations among 

stakeholders, ultimately leading to the successful 

delivery of a product that meets its intended purpose 

efficiently and effectively. 

XILINX Software 

Xilinx Tools is a suite of software tools used for the 

design of digital circuits 

Implemented using Xilinx Field Programmable Gate 

Array (FPGA) or Complex Programmable Logic 

Device (CPLD). The design procedure consists of 

(a) design entry, (b) synthesis and implementation 

of the design, (c) functional simulation and (d) 

testing and verification. Digital designs can be 

entered in various ways using the above CAD tools: 

using a schematic entry tool, using a hardware 

description language (HDL) – VHDL or VHDL or 

a combination of both. In this lab we will only use 

the design flow that involves the use of VHDL 

HDL. 

The CAD tools enable you to design combinational 

and sequential circuits starting with VHDL HDL 

design specifications. The steps of this design 

procedure are listed below: 

 Create VHDL design input file(s) using template 

driven editor. 

 Compile and implement the VHDL design file(s). 

 Create the test-vectors and simulate the 

design (functional simulation) without using 

a PLD (FPGA or CPLD). 
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 Assign input/output pins to implement the 

design on a target device. 

 Download bit stream to an FPGA or CPLD 

device. 

 Test design on FPGA/CPLD device 

 A VHDL input file in the Xilinx software 

environment consists of the following 

segments: 

 Header: module name, list of input and 

output ports. 

 Declarations: input and output ports, 

registers and wires. 

 Logic Descriptions: equations, state 

machines and logic functions. 

 End: end module 

4- RESULT 

The results and simulation phase is a critical 

component in the development of the power- 

efficient posit multiplier, as it validates the design's 

functionality, performance, and efficiency. This 

phase involves the application of various simulation 

tools and methodologies to analyze the multiplier's 

behavior under different conditions and inputs, 

ensuring it meets the specified requirements. By 

leveraging simulation environments, developers can 

effectively assess key performance indicators such 

as speed, accuracy, and power consumption before 

physical implementation. The evaluation of the posit 

multiplier encompasses a range of scenarios, 

including varying operand sizes and operational 

contexts, to demonstrate its versatility and 

robustness. Through comprehensive testing and 

analysis, the simulation results provide valuable 

insights into the multiplier's operational efficiency, 

revealing its potential advantages over traditional 

floating-point systems. Ultimately, this phase not 

only confirms the effectiveness of the design but 

also highlights areas for further optimization, paving 

the way for its application in real-world 

computational tasks. 

 

RTLAnd Technology Schematics 
 

Fig 5.2.1: 8-bit RTL view of posit multiplier ( A Snapshot from Vivado Software) 
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In the context of a power-efficient posit multiplier, 

the RTL diagram illustrates the key components, 

such as the registers for input and output, the 

arithmetic logic units (ALUs) 

responsible for multiplication, and any control logic 

needed to manage data flow and timing. The 

diagram typically includes the following elements: 

Registers: Represent storage locations for operands 

and results. 

Arithmetic  Logic  Units  (ALUs):  Perform 

multiplication and other arithmetic operations. 

Control Signals: Manage the sequencing of 

operations and data transfers. 

Data Paths: Indicate the routes through which data 

travels between components. 

The RTL diagram is instrumental for developers 

and engineers in understanding the architecture of 

the circuit, facilitating easier debugging, 

optimization, and synthesis into physical hardware. 

 

 

 
Fig 5.2.2: 8-bit Detailed view of RTL posit multiplier ( A Snapshot from Vivado Software) 

 

 

Fig 5.3.1: Synthesis result of Area 
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5.1.1 Power 
 

Fig 5.3.3: Synthesis result of power. 

 

5.1.2 8 Bit Un-Signed POSIT Multiplier: 
 

 

Fig 5.3.4: Simulation result of 8-bit un-signed posit multiplier ( A Snapshot from Vivado Software) 

5.1.3 8-Bit Signed POSIT Multiplier: 

 

 

Fig 5.3.5: Simulation result of 8-bit signed posit multiplier (A Snapshot from Vivado 

Software) 
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Table 1: COMPARISON TABLE 

 

PARAMETERS EXISTING PROPOSED 

AREA 144 LUTS 80 LUTS 

POWER(W) 0.143 0.065 

DELAY 8.806ns 5.232ns 

 

It can be seen that the comparison of the 8-bit 

POSIT multiplier in terms of operating speed 

indicates that the Posit multiplier and the Rounding 

Algorithm multiplier have similar characteristics of 

power. But in terms of hardware complexity, the 8- 

bit modified Rounding Algorithm multiplier gives a 

reduction in the area and delay by almost compared 

to the 8-bit Posit multiplier. Moreover, with the 

schematic implementation of the 8-bit Posit 

multiplier, the modified ROBA multiplier reduces 

hardware complexity compared to the Posit 

multiplier. 

 

5- Conclusion 

In conclusion, this chapter has highlighted the 

design and implementation of the power- efficient 

posit multiplier, showcasing its advantages over 

traditional floating-point systems in terms of 

performance and energy efficiency. The results 

affirm its viability for modern computational 

applications. Looking ahead, there are several 

promising avenues for further development, 

including integration with advanced computing 

architectures, optimization techniques, and 

specialized hardware implementations. Expanding 

its functionality and pursuing standardization will 

also enhance its adoption. Additionally, exploring 

its application in emerging fields such as quantum 

computing and IoT can unlock new opportunities. 

Overall, the posit multiplier is well-positioned to 

contribute significantly to the future of efficient 

computing solutions. 
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