
ISSN 2277-2685

IJESR/Jan-Mar. 2025/ Vol-15/Issue-1s/68-75

Tanneru Sharanya et. al., / International Journal of Engineering & Science Research

68

Design Of Power Efficient POSIT Multiplier

1Mrs. Kazi Nikhat Pravin, 2Tanneru Sharanya, 3Shikilambatla Sravika, 4Chintalphani Trisha Reddy

1 Associate Professor, Electronics and Communication Engineering, BRECW

2,3,4B.Tech Students, Department of Electronics and Communication Engineering, BRECW

ABSTRACT

Design Of Power Efficient POSIT Multiplier

Abstract Posit number system has been used as an

alternative to the IEEE floating-point number

system in many applications, especially the recent

popular deep learning. Its non-uniformed number

distribution fits well with the data distribution of

deep learning and thus can speed up the deep

learning training process. Among all the related

arithmetic operations, multiplication is one of the

most frequent operations used in applications.

However, due to the bit-width flexibility nature of

posit numbers, the hardware multiplier is usually

designed with the maximum possible mantissa bit-

width. As the mantissa bit-width is not always the

maximum value, such multiplier design leads to a

high power consumption especially when the

mantissa bit-width is small. In this brief, a power-

efficient posit multiplier architecture is proposed.

The mantissa multiplier is still designed for the

maximum possible bit-width however, the whole

multiplier is divided into multiple smaller

multipliers. Only the required small multipliers are

enabled at run-time. Those smaller multipliers are

controlled by the regime bit-width which can be

used to determine the mantissa bit-width. This

design technique is applied to 8-bit, 16-bit, and 32-

bit posit formats in this brief, and an average of 16%

power reduction can be achieved with negligible

area and timing overhead. Power consumption

distribution of a posit multiplier Posit component

extraction in hardware arithmetic unit Datapath of

the proposed posit multiplier.

1- INTRODUCTION

A power-efficient Posit multiplier is a key

component in modern computing systems that

leverages the advantages of the Posit number

system, an emerging alternative to traditional

floating-point representation. The Posit system

provides higher accuracy, dynamic range, and

efficiency for various computational tasks, making

it particularly attractive for machine learning,

scientific computing, and embedded systems.

However, one of the main challenges in

implementing Posit arithmetic, especially

multiplication, is achieving high performance while

minimizing power consumption.

A power-efficient design of the Posit multiplier

focuses on reducing energy usage without

sacrificing the precision and speed that Posits offer.

This involves optimizing the hardware architecture,

utilizing techniques such as operand truncation,

approximate computing, and advanced low-power

design methods. By developing such a multiplier,

designers aim to improve both computational

efficiency and energy consumption, which is crucial

for battery- powered and resource-constrained

devices, as well as large-scale data centers where

power is a critical concern.

2- LITERATURE SURVEY

In this section, some of the previous works in the

field of approximate multipliers are briefly

reviewed. In, an approximate multiplier and an

approximate adder based on a technique named

broken-array multiplier (BAM) were proposed. By

applying the BAM approximation method of to the

ISSN 2277-2685

IJESR/Jan-Mar. 2025/ Vol-15/Issue-1s/68-75

Tanneru Sharanya et. al., / International Journal of Engineering & Science Research

69

conventional modified Booth multiplier, an

approximate signed Booth multiplier was presented

in. The approximate multiplier provided power

consumption savings from 28% to 58.6% and area

reductions from 19.7% to 41.8% for different word

lengths in comparison with a regular Booth that

saved the power by 31.8%–45.4% over an accurate

multiplier. An approximate multiplier. Kulkarni et

al. suggested an approximate multiplier consisting

of a number of 2 × 2 inaccurate building blocks

signed 32-bit multiplier for speculation purposes in

pipelined processors was designed in. It was 20%

faster than a full-adder-based tree multiplier while

having a probability of error of around 14%.

In, an error-tolerant multiplier, which computed the

approximate result by dividing the multiplication

into one accurate and one approximate part, was

introduced, in which the accuracies for different bit

widths were reported. In the case of a 12-bit

multiplier, a power saving of more than 50% was

reported. The use of approximate multipliers in

image processing

applications, which leads to reductions in power

consumption, delay, and transistor count compared

with those of an exact multiplier design, has been

discussed in the literature. An accuracy-

configurable multiplier architecture (ACMA) was

suggested for error-resilient systems. To increase its

throughput, the ACMA made use of a technique

called carry-in prediction that worked based on a

pre-computation logic. When compared with the

exact one, the proposed approximate multiplication

resulted in nearly 50% reduction in the latency by

reducing the critical path. Also, Bhardwaj et al.

presented an approximate Wallace tree multiplier

(AWTM). Again, it invoked the carry-in prediction

to reduce the critical path. In this work, AWTM was

used in a real-time benchmark image application

showing about 40% and 30% reductions in the

power and area, respectively, without any image

quality loss compared with the case of using an

accurate Wallace tree multiplier (WTM) structure.

Approximate unsigned multiplication and division

based on an approximate logarithm of the operands

have been proposed. In the proposed multiplication,

the approximate logarithms' summation determines

the operation's result. Hence, the multiplications are

simplified to some shift and add operations. A

method for increasing the accuracy of the

multiplication approach was proposed. It was based

on the decomposition of the input operands. This

method considerably improved the average error at

the price of increasing the hardware of the

approximate multiplier by about two times. A

dynamic segment method (DSM) is presented,

which performs the multiplication operation on an

m-bit segment starting from the leading one bit of

the input operands. A dynamic range unbiased

multiplier (DRUM) multiplier, which selects an m-

bit segment starting from the leading one bit of the

input operands and sets the least significant bit of

the truncated values to one, has been proposed.

In this structure, the truncated values are multiplied

and shifted to left to generate the final output. An

approximate 4 ×4 WTM has been proposed that uses

an inaccurate 4:2 counters. In addition, an error

correction unit for correcting the outputs has been

suggested. To construct larger multipliers, this 4 ×

4 inaccurate Wallace multiplier can be used in an

array structure. Most of the previously proposed

approximate multipliers are based on either

modifying the structure or complexity reduction of

a specific accurate multiplier. In this paper, we

propose performing the approximate multiplication

through simplifying the operation. The difference

between our work and the previous is that, although

the principles in both works are almost similar for

unsigned numbers, the mean error of our proposed

approach is smaller. In addition, we suggest some

approximation techniques when the multiplication

ISSN 2277-2685

IJESR/Jan-Mar. 2025/ Vol-15/Issue-1s/68-75

Tanneru Sharanya et. al., / International Journal of Engineering & Science Research

70

is performed for signed number.

3- Mathematical Foundation and Architecture

The mathematical foundation and architecture of

posit multipliers are integral to understanding the

advantages and operational efficiency of the posit

number system in modern computing. This

foundation's core lies in the mathematical principles

governing posit numbers, specifically the regime,

exponent, and fraction fields. These components

allow posits to represent a wide range of values with

dynamic precision, thus addressing many limitations

inherent in traditional floating-point systems. In this

section, we will break down the multiplication

process within posit arithmetic, providing a step-by-

step analysis that showcases how combining these

fields enables efficient and accurate calculations.

Furthermore, error analysis and accuracy

considerations will be discussed, emphasizing the

significance of rounding modes and exception

handling in ensuring reliable computational

outcomes. As we transition from the mathematical

principles to the architecture of the posit multiplier,

we will explore the specific structures and

components that define its operation. This includes

input handling, data flow, and output generation,

along with the distinct roles played by various

modules in the multiplication process. A

comparison with floating-point multiplier

architecture will illustrate how the posit multiplier

achieves greater efficiency and precision,

positioning it as a superior alternative in the context

of energy-sensitive and high- performance

computing applications.

Software Requirement

The software must facilitate efficient processing of

posit numbers, incorporating error handling and

optimization techniques to enhance computational

speed and accuracy. Additionally, requirements for

performance monitoring and power management

features are essential to align with the project’s

objectives of minimizing energy consumption. Clear

and well-defined software requirements not only

guide developers in creating robust applications but

also help in managing expectations among

stakeholders, ultimately leading to the successful

delivery of a product that meets its intended purpose

efficiently and effectively.

XILINX Software

Xilinx Tools is a suite of software tools used for the

design of digital circuits

Implemented using Xilinx Field Programmable Gate

Array (FPGA) or Complex Programmable Logic

Device (CPLD). The design procedure consists of

(a) design entry, (b) synthesis and implementation

of the design, (c) functional simulation and (d)

testing and verification. Digital designs can be

entered in various ways using the above CAD tools:

using a schematic entry tool, using a hardware

description language (HDL) – VHDL or VHDL or

a combination of both. In this lab we will only use

the design flow that involves the use of VHDL

HDL.

The CAD tools enable you to design combinational

and sequential circuits starting with VHDL HDL

design specifications. The steps of this design

procedure are listed below:

 Create VHDL design input file(s) using template

driven editor.

 Compile and implement the VHDL design file(s).

 Create the test-vectors and simulate the

design (functional simulation) without using

a PLD (FPGA or CPLD).

ISSN 2277-2685

IJESR/Jan-Mar. 2025/ Vol-15/Issue-1s/68-75

Tanneru Sharanya et. al., / International Journal of Engineering & Science Research

71

 Assign input/output pins to implement the

design on a target device.

 Download bit stream to an FPGA or CPLD

device.

 Test design on FPGA/CPLD device

 A VHDL input file in the Xilinx software

environment consists of the following

segments:

 Header: module name, list of input and

output ports.

 Declarations: input and output ports,

registers and wires.

 Logic Descriptions: equations, state

machines and logic functions.

 End: end module

4- RESULT

The results and simulation phase is a critical

component in the development of the power-

efficient posit multiplier, as it validates the design's

functionality, performance, and efficiency. This

phase involves the application of various simulation

tools and methodologies to analyze the multiplier's

behavior under different conditions and inputs,

ensuring it meets the specified requirements. By

leveraging simulation environments, developers can

effectively assess key performance indicators such

as speed, accuracy, and power consumption before

physical implementation. The evaluation of the posit

multiplier encompasses a range of scenarios,

including varying operand sizes and operational

contexts, to demonstrate its versatility and

robustness. Through comprehensive testing and

analysis, the simulation results provide valuable

insights into the multiplier's operational efficiency,

revealing its potential advantages over traditional

floating-point systems. Ultimately, this phase not

only confirms the effectiveness of the design but

also highlights areas for further optimization, paving

the way for its application in real-world

computational tasks.

RTLAnd Technology Schematics

Fig 5.2.1: 8-bit RTL view of posit multiplier (A Snapshot from Vivado Software)

72

ISSN 2277-2685

IJESR/Jan-Mar. 2025/ Vol-15/Issue-1s/68-75

Tanneru Sharanya et. al., / International Journal of Engineering & Science Research

In the context of a power-efficient posit multiplier,

the RTL diagram illustrates the key components,

such as the registers for input and output, the

arithmetic logic units (ALUs)

responsible for multiplication, and any control logic

needed to manage data flow and timing. The

diagram typically includes the following elements:

Registers: Represent storage locations for operands

and results.

Arithmetic Logic Units (ALUs): Perform

multiplication and other arithmetic operations.

Control Signals: Manage the sequencing of

operations and data transfers.

Data Paths: Indicate the routes through which data

travels between components.

The RTL diagram is instrumental for developers

and engineers in understanding the architecture of

the circuit, facilitating easier debugging,

optimization, and synthesis into physical hardware.

Fig 5.2.2: 8-bit Detailed view of RTL posit multiplier (A Snapshot from Vivado Software)

Fig 5.3.1: Synthesis result of Area

73

5.1.1 Power

Fig 5.3.3: Synthesis result of power.

5.1.2 8 Bit Un-Signed POSIT Multiplier:

Fig 5.3.4: Simulation result of 8-bit un-signed posit multiplier (A Snapshot from Vivado Software)

5.1.3 8-Bit Signed POSIT Multiplier:

Fig 5.3.5: Simulation result of 8-bit signed posit multiplier (A Snapshot from Vivado

Software)

74

Table 1: COMPARISON TABLE

PARAMETERS EXISTING PROPOSED

AREA 144 LUTS 80 LUTS

POWER(W) 0.143 0.065

DELAY 8.806ns 5.232ns

It can be seen that the comparison of the 8-bit

POSIT multiplier in terms of operating speed

indicates that the Posit multiplier and the Rounding

Algorithm multiplier have similar characteristics of

power. But in terms of hardware complexity, the 8-

bit modified Rounding Algorithm multiplier gives a

reduction in the area and delay by almost compared

to the 8-bit Posit multiplier. Moreover, with the

schematic implementation of the 8-bit Posit

multiplier, the modified ROBA multiplier reduces

hardware complexity compared to the Posit

multiplier.

5- Conclusion

In conclusion, this chapter has highlighted the

design and implementation of the power- efficient

posit multiplier, showcasing its advantages over

traditional floating-point systems in terms of

performance and energy efficiency. The results

affirm its viability for modern computational

applications. Looking ahead, there are several

promising avenues for further development,

including integration with advanced computing

architectures, optimization techniques, and

specialized hardware implementations. Expanding

its functionality and pursuing standardization will

also enhance its adoption. Additionally, exploring

its application in emerging fields such as quantum

computing and IoT can unlock new opportunities.

Overall, the posit multiplier is well-positioned to

contribute significantly to the future of efficient

computing solutions.

REFERENCES

[1] Efficient Approximate Posit Multipliers for

Deep Learning Computation – This paper addresses

the cost challenges of posit arithmetic in hardware

and proposes efficient designs for deep learning

applications (2023).

[2] Design of Power Efficient Posit Multiplier

using Compressor-Based Adder – This paper

focuses on breaking the mantissa multiplier into

smaller units for power optimization in deep

learning applications (2023)

[3] Dynamic-Precision Efficient Posit Multiplier

for Neural Networks– This work explores a posit

multiplier optimized for dynamic precision control

in neural network computations, offering better

power and area efficiency (2023)

[5] Sitar, D., and Gustafson, J. L., "A Novel Power-

Efficient Posit Multiplier for IoT Applications"

(2022)

[6] Muruganatham Ganesan, "Power-Efficient

Posit Multiplier Design with Approximate

Computing," 2022

[7] "High-Performance Arithmetic Circuits" –

Pramod Kumar Meher (2022)

[8] "Efficient Floating-Point and Posit Arithmetic

Hardware Implementations" – F. Hossain, A.

George (2021)

75

[9] Hardware Design of Posit Arithmetic Units" by

Vincent Granados, et al., (2021)

[10] Rajesh Kumar, Manoj Kr. Gupta, "FPGA

Implementation of Posit Multiplier for

Energy-

Efficient Computation," 2020

[11] Johnson, J - "Rethinking floating point for

deep learning," CoRR, 2018.

[12] Chaurasiya, R. et al- "Parameterized posit

arithmetic hardware generator," IEEE 36th Int.

Conf. Comput. Design (ICCD), 2018.

[13] Jaiswal, M. K., & So, H.-K -

"Architecture generator for type-3 unum posit

adder/subtractor," IEEE Int. Symp. Circuits Syst.

(ISCAS), 2018.

[14] Podobas, S., & Matsuoka, S - "Hardware

implementation of POSITs and their application in

FPGAs," IEEE Int. Parallel Distrib. Process. Symp.

Workshops (IPDPSW), 2018.

[15] Carmichael, Z. et al - "Deep positron: A deep

neural network using the posit number system,"

2018.

[16] S. van der Linde, “Posits als vervanging van

floating-points: Een vergelijking van Unum Type

III Posits met IEEE 754 Floating Points met

Mathematica en Python”, Bachelor’s Thesis, Delft

University of Technology, Sep. 26, 2018.

[17] H. F. Langroudi, Z. Carmichael, J. L.

Gustafson, and D. Kudithipudi, “PositNN: Tapered

Precision Deep Learning Inference for the Edge”,

2018.

	1Mrs. Kazi Nikhat Pravin, 2Tanneru Sharanya, 3Shikilambatla Sravika, 4Chintalphani Trisha Reddy
	1- INTRODUCTION
	2- LITERATURE SURVEY
	Software Requirement
	XILINX Software

	4- RESULT
	Fig 5.2.1: 8-bit RTL view of posit multiplier (A Snapshot from Vivado Software)
	Fig 5.2.2: 8-bit Detailed view of RTL posit multiplier (A Snapshot from Vivado Software)
	Fig 5.3.3: Synthesis result of power.
	Fig 5.3.4: Simulation result of 8-bit un-signed posit multiplier (A Snapshot from Vivado Software)
	Fig 5.3.5: Simulation result of 8-bit signed posit multiplier (A Snapshot from Vivado Software)
	5- Conclusion

	REFERENCES

