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ABSTRACT  

Graph filters are one of the core tools in graph 

signal processing. A central aspect of them is their 

direct distributed implementation. However, the 

filtering performance is often traded with distributed 

communication and computational savings. To 

improve this tradeoff, this work generalizes state-of-

the art distributed graph filters to filters where every 

node weights the signal of its neighbors with 

different values while keeping the aggregation 

operation linear. This new implementation, labeled 

as edge-variant graph filter, yields a significant 

reduction in terms of communication rounds while 

preserving the approximation accuracy. In addition, 

we characterize the subset of shift-invariant graph 

filters that can be described with edge-variant 

recursions. By using a low-dimensional 

parametrization the proposed graph filters provide 

insights in approximating linear operators through 

the succession and composition of local operators, 

i.e., fixed support matrices, which span applications 

beyond the field of graph signal processing. A set of 

numerical results shows the benefits of the edge-

variant filters over current methods and illustrates 

their potential to a wider range of applications than 

graph filtering. 

 

1-INTRODUCTION 

Forgetting the philosophical standoff, we can assert 

that actions require interactions. Therefore, it is 

naive to believe that it is possible to understand the 

inner workings of processes observed in our daily 

life, e.g., currency trading, friendship formation, oil 

pricing, without the understanding of the structure 

that defines (or supports) the interactions in such 

systems. For example, it is not possible to fully 

understand conflict without a proper assessment of 

how the relationships among the involved  

parties.    

Similarly, we cannot expect to produce high-quality 

predictions of users’ consumption patterns, if we do 

not make use of the information available from users 

with the same characteristics, e.g., close friends, 

similar demographics, etc.    

Although traditional signal processing has always 

made use of models and relations in data, e.g., the 

correlation between measurements, traditional tools 

are not sufficient to address the challenges that 

complex interactions, beyond time and space, bring 

into the table. As an answer, graph signal processing 

(GSP) has established itself as a balanced mix of the 

well-known mathematical rigor from signal 

processing and graph theory, with empirical 

modeling seen in network theory. This blend has led 

to a powerful tool for analyzing data from network 

processes exploiting all available information about 

the existing interactions.    

This thesis, using GSP as its foundation, aims to 

provide a further understanding of processes where 

the interactions between elements of a system are at 

their core. It presents advanced topics in areas 

related to how network data has to be processed, 

how we can implement these data processing 

pipelines, and how to discover relations between 

actors in a network process by observation of the 

network data itself.    

In this chapter, we first motivate the use and study of 

graphs, as well as its combination with signal 
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processing, for analyzing network data. We then 

provide the scope of the research in the field of GSP 

and the outline of this thesis. We conclude with our 

research contributions within GSP and other areas 

intersecting with signal processing. We do all this 

considering that the contributions of this thesis must 

reach an audience not versed in the area.    

 

2-LITERATURE SURVEY 

Distributed graph filtering has gained significant 

attention due to the growing need for scalable graph 

processing in large-scale applications. Traditional 

graph filtering techniques, such as spectral filtering  

and wavelet-based methods, are computationally 

expensive and struggle with distributed 

implementations. Graph Neural Networks (GNNs), 

including Graph SAGE, GAT, and GCN, have  

introduced efficient filtering mechanisms but face 

challenges in scalability and real- time processing. 

Polynomial approximations, such as Chebyshev and 

Lanczos methods, have been explored to reduce 

computational complexity in spectral filtering. 

Recent advancements in federated learning and 

differential privacy enable secure and decentralized 

graph filtering, addressing privacy concerns in 

distributed environments. Streaming graph filtering 

techniques have been developed to handle dynamic 

and evolving graphs efficiently. Partitioning 

strategies, like METIS and random-walk-based  

methods,  optimize  workload  distribution  for  

parallel processing. 

 Frameworks like Apache Spark GraphX, Deep 

Graph Library (DGL), and PyTorch Geometric 

provide scalable solutions but still face challenges in 

communication overhead. Adversarial robustness 

has become a key focus to prevent malicious attacks 

on graph-structured data. Despite these 

advancements, there remains a need for optimized, 

real-time, and privacy-preserving distributed graph 

filtering methods for large-scale  

applications.    

 

3-GRAPH SIGNAL PROCESSING 

Traditionally, time and space have been two physical 

domains that have allowed for defining a natural 

way to organize and explore data. For example, a 

series of stock prices during a year are considered as 

a time series; that is, a sequence of quantities that are 

ordered based on their recording time. Similarly, the 

concentration of a certain gas or the temperature in 

a geographical region are typical examples of field 

measurements. Here, the data is structured based on 

the (geographic) location where the measurements 

are taken. Naturally, the combination of such 

domains can be considered, i.e., spatio- temporal 

domain, thus a structure is naturally imposed on this 

data when it is examined over a window of time in a 

particular spatial region. Figure 2.1 provides 

examples of both temporal and  

spatial signals.    

Graph Signal Processing    

We consider a network to be represented by a graph 

G = (V, E), where V = {v1, . . . , vN } is the set of N 

vertices (nodes) and E ⊆ V × V is the edge set of M 

tuples ei, j = (vi , vj- ) repre- senting the connections 

between the nodes in the network. As a network, the 

connections in a graph can have direction; that is, a 

bidirectional exchange of information between 

nodes i and j does not necessarily have to exist. This 

behaviour is captured, and repre- sented abstractly, 

through either directed or undirected graphs. A graph 

is said to be undi- rected if there is no orientation of 

the edges (information flow) for all tuples (vi , vj ) 

∈ E , otherwise the graph is called directed. Figure 

2.2 illustrates the difference between these two types 

of graphs. When there is information about the 
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strength of the connection, i.e., wi, j ∈ R+ is the 

weight of the edge (vj , vi ) ∈ E , we say that the 

graph is a weighted graph, otherwise we consider it 

as an unweighted graph.    

 

Advances in Graph Filtering    

Graph filters are one of the core tools in graph signal 

processing. A central aspect of them is their direct 

distributed implementation. However, the filtering 

performance is often traded with distributed 

communication and computational savings. To 

improve this tradeoff, this chapter provides a 

generalization of state-of-the-art distributed graph 

filters to filters where every node weights the signal 

of its neighbors with different values while keeping 

the aggregation operation linear. This new 

implementation, labeled as edge-variant graph filter, 

yields a significant reduction in terms of 

communication rounds while preserving the 

approximation accuracy. In addition, we 

characterize a subset of shift-invariant graph filters 

that can be described with edge- variant recursions. 

By using a low-dimensional parametrization, these 

shift-invariant filters provide new insights in 

approximating linear graph spectral operators 

through the succession and composition of local 

operators, i.e., fixed  

support matrices.    

Filtering is one of the core operations in signal 

processing. The necessity to process large amounts 

of data defined over non-traditional domains, 

characterized by a graph, triggers advanced signal 

processing of the complex data relations embedded 

in that graph. Examples of the latter include 

biological, social, and transportation network data. 

The field of graph signal processing (GSP) has been 

established to incorporate the underlying structure in 

the processing techniques. Through a formal 

definition of the graph Fourier transform (GFT), 

harmonic analysis tools employed for  

filtering in traditional signal processing have been 

adapted to deal with signals defined over graphs .    

Similarly to time-domain filtering, graph filters 

manipulate the signal by selectively amplify- 

ing/attenuating its graph Fourier coefficients. Graph 

filters have seen use in applications such as signal 

analysis , classification , reconstruction , denoising 

and clustering . Furthermore, they are the central 

block in graph filter banks , wavelets , and 

convolutional neural networks .  

Distributed implementations of graph filters 

emerged as a way to deal with the ubiquity of big 

data applications and to improve the scalability of 

computation. By allowing nodes to exchange only 

local information, finite impulse response (FIR)and 

in- finite impulse response (IIR) architectures have 

been devised to implement a variety of responses. 

However, being inspired by time-domain filters, the 

above implementations do not fully exploit the 

structure in the graph data. The successive signal 

aggregations are locally weighted with similar 

weights. This procedure often leads to high orders 

when approximating the desired response. To 

overcome this challenge, this chapter proposes a 

generalization of the distributed graph filtering 

concept by applying edge-based weights to the 

information coming from different neighbors. While 

the de- tailed contributions are provided in Section 

3.1.2, let us here highlight that the above twist yields 

graph filters that are flexible enough to capture 

complex responses with much lower complexity.    

 

4-RESULTS 

We now present a set of numerical examples to 

corroborate the applicability of the proposed filters 

for several distributed tasks. Table I presents a 
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summary of the different graph filters mentioned in 

this work along with their specifications. In our 

simulations2 , we made use of the GSP toolbox. A. 

Graph Filter Approximation We here test the 

proposed FIR graph filters in approximating a user 

provided frequency response. We consider a random 

community graph of N = 256 nodes and shift 

operator S = L. The frequency responses of interest 

are two commonly used responses in the GSP 

community, i.e., (i) the exponential kernel h˜(λ) := e 

−γ(λ−µ) 2 , with γ and µ being the spectrum 

decaying factor and the central parameter, 

respectively; (ii) the ideal low-pass filter h˜(λ) = ( 1 

0 ≤ λ ≤ λc 0 otherwise, with λc being the cut-off 

frequency. The approximation accuracy of the 

different filters is evaluated in terms of the 

normalized squared error NSE = kH˜ − Hfitk 2 F 

/kH˜ k 2 F . Hfit stands for the filter matrix of the 

fitted filters. Fig. 2 illustrates the performances of 

the different filters. In the exponential kernel 

scenario, we observe that the CEV FIR filter 

outperforms the other alternatives by showing a 

performance improvement of several orders of 

magnitude. A similar result is also seen in the low-

pass example, where the CEV FIR filter achieves the 

error floor for K = 8, while the NV graph filter for K 

= 13 and the classical FIR filter for K = 17. 

Additionally, we observe that the SIEV FIR filter 

achieves a similar performance as the NV FIR filter. 

This result suggests that despite the additional DoF 

of the SIEV FIR filter, the nonconvex design 

strategy yields a local minimum that does not exploit 

the full capabilities of the filter. This local 

minimality effect can be seen in the stagnation of the 

error of the SIEV FIR filter for the exponential 

kernel case after K ≥ 8. Finally, we notice that the 

SICEV filter achieves a performance similar to the 

NV Filter of the same order, while having less DoF. 

This characteristic of the SICEV shows its benefits 

as the order increases. Having to estimate less 

parameters, the error stagnation for the step response 

is achieved at a higher filter order, hence a better 

approximation can be obtained.   

The above observations further motivate the use of 

the CEV FIR filter, which trades better the simplicity 

of the design and the available DoF. In fact, even 

though the CEV FIR filter is conceptually simpler 

than the SIEV graph filter, it performs better than the 

latter. In addition, the larger DoF of the CEV FIR 

filter compared to the NV FIR filter (i.e., 

nnz(S)·K+N vs N ·(K + 1)) allows the CEV FIR 

filter to better approximate the desired response. In 

a distributed setting, these benefits translate into 

communication and computational savings.   

Several distributed tasks of interest consist of 

performing a linear operation H˜  R N×N over a 

network. This can be for instance a beamforming 

matrix over a distributed array or a consensus 

matrix. In most of these cases, such linear operators 

cannot be straightforwardly distributed. In this 

section, we illustrate the capabilities of the 

developed graph filters in addressing this task.   

Distributed Beamforming. We here consider the task 

of applying a beamforming matrix WH to  

signals acquired via a distributed array   

    

 Phase 1 outputs:   
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                        Figure2.7  NSE versus filter order for different distributed FIR filter  

 

Figure 2.8Convergence error versus the number of iterations for the Tikhonov denoising problem. 

      

 Phase 2 output:   

 

Figure2.9 Eigenvalues [λ] 
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The preferred to improve the convergence speed. 

However, values below 0.7 should in general be 

avoided since this restricts too much the feasible set 

of  hence leading to a worse approximation error. 

Second, values of δ ≈ 0.7 seem to give the best 

tradeoff, since the convergence speed is doubled 

w.r.t the ARMA1 and the approximation error is 

close to machine precision. Finally, we did not plot 

the classical FIR filter for solving this problem, 

since its performance is identical to the ARMA1 for 

the  

same distributed cost.   

   

5-CONCLUSION 

In this work, a generalization of distributed graph 

filters was proposed. These filters, that we referred 

to as edge-variant graph filters, have the ability to 

assign different weights to the information coming 

from different neighbors. Through the design of 

edge-weighting matrices, we have shown that it is 

possible to weight, possibly in an asymmetric 

fashion, the information propagated in the network 

and improve the performance of state-of-the-art 

graph filters. By introducing the notion of filter 

modal response, we showed that a subclass of the 

edge-variant graph filters have a graph Fourier 

interpretation that illustrates the filter action on the 

graph modes. Despite that the most general 

edgevariant graph filter encounters numerical 

challenges in the design phase, a constrained version 

of it was introduced to tackle this issue. This so-

called constrained edge-variant graph filter enjoys a 

similar distributed implementation, generalizes the 

state-of-the-art approaches, and is characterized by 

a simple least-squares design. For the constrained 

version, we also showed that there exists a subclass 

which has a modal response interpretation.   

Finally, we extended the edge-variant idea to the 

family of IIR graph filters, particularly to the 

ARMA1 graph filter. We showed that by adopting 

the same local structure a distributed rational filter 

can be achieved, yet with a much faster convergence 

speed. Several numerical tests corroborate our 

findings and show the potential of the proposed 

filters to improve state-of-the-art techniques. Future 

research in this direction should concern the 

following points: i) improve the design strategy of 

the more general edge-variant version; ii) improve 

the saturation accuracy of the proposed methods 

when dealing with a distributed implementation of 

linear operators; iii) conciliate the world of GSP with 

that of distributed optimization and exploit the latter 

to design distributed graph filters; and iv) extend the 

edgevariant concept beyond the ARMA1 

implementation to the global family of IIR graph 

filters.   

By introducing the notion of filter modal response, 

we showed that a subclass of the edge-variant graph 

filters have a graph Fourier interpretation that 

illustrates the filter action on the graph modes. 

Despite that the most general edge-variant graph 

filter encounters numerical challenges in the design 

phase, a constrained version of it was introduced to 

tackle this issue   
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