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Abstract

Groundwater contamination has emerged as a critical environmental concern in India, threatening drinking water
safety and public health. This study assesses groundwater contamination using Geographic Information System (GIS)
and Remote Sensing (RS) techniques, with the objective of mapping spatial distribution of contaminants, evaluating
groundwater vulnerability, and determining the Water Quality Index (WQI) across selected contamination-prone
regions of India. The methodology integrates satellite-derived data from Landsat-8 OLI and Sentinel-2, combined
with field-collected hydrochemical data analyzed through the DRASTIC vulnerability model and weighted arithmetic
WQI within an ArcGIS 10.8 framework. It is hypothesized that areas with intensive agricultural and industrial land
use exhibit significantly higher groundwater contamination levels. Results reveal that approximately 55% of the
studied area falls under poor to unfit water quality categories, with Total Dissolved Solids (TDS) ranging from 252
to 2065 mg/L and fluoride concentrations exceeding the WHO permissible limit of 1.5 mg/L in 43—49% of samples.
The DRASTIC model identified high vulnerability zones concentrated near urban-industrial corridors and intensively
irrigated agricultural belts. The study concludes that integrated GIS-RS approaches provide robust, cost-effective
frameworks for groundwater contamination assessment, enabling spatially explicit decision-making for sustainable

groundwater management in India.
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1. Introduction

Groundwater constitutes a fundamental freshwater
resource that sustains agriculture, drinking water
supply, and socio-economic development across the
globe, particularly in regions where surface water
availability is limited and unreliable (Li et al., 2021).
India, being one of the largest consumers of
groundwater globally, extracts approximately 251
billion cubic meters annually, accounting for nearly
25% of global groundwater withdrawal (Rodell et al.,
2009). The Central Ground Water Board (CGWB) has
documented progressive deterioration in groundwater
quality across several Indian states, including Uttar
Pradesh, Rajasthan, Haryana, Punjab, West Bengal,
Tamil Nadu, and Kerala, attributable to a complex
interplay of geogenic processes and anthropogenic
pressures (Kumar et al, 2024). Urbanization,
industrial expansion, excessive fertilizer application,
and inadequate wastewater management have
intensified contaminant loading into aquifer systems,
rendering groundwater unfit for drinking and
irrigation in numerous regions (Madhav et al., 2020).
The conventional approach to groundwater quality

assessment relies on point-based sampling and
laboratory analysis, which, while accurate, is spatially
limited, time-consuming, and  economically
prohibitive for large-scale monitoring (Chowdhury et
al., 2003). In this context, the integration of Remote
Sensing (RS) and Geographic Information System
(GIS) technologies has revolutionized
hydrogeological investigations by enabling synoptic,
multi-temporal, and  spatially = comprehensive
assessments of groundwater resources (Elbeih, 2015).
Remote sensing platforms, including Landsat-8 OLI,
Sentinel-2, and GRACE satellites, provide critical
datasets on land use/land cover (LULC) dynamics,
terrain morphology, geological structures, and
terrestrial water storage changes that directly influence
groundwater quality and quantity (Kofidou, 2024).
GIS complements these capabilities by facilitating
spatial ~ overlay  analysis, interpolation  of
hydrochemical data, and integration of thematic layers
for vulnerability mapping (Shaikh & Birajdar, 2024).

The DRASTIC model, originally developed by the
United States Environmental Protection Agency, has
been widely adopted in India for assessing intrinsic
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groundwater vulnerability using seven
hydrogeological parameters: Depth to water table, net
Recharge, Aquifer media, Soil media, Topography,
Impact of vadose zone, and hydraulic Conductivity
(Bhuvaneswaran & Ganesh, 2019). Several recent
studies have demonstrated that when combined with
GIS-based spatial analysis and LULC mapping
through remote sensing, the DRASTIC model
produces reliable vulnerability assessments that can
guide groundwater protection strategies (Ghosh et al.,
2021; Sarkar & Pal, 2021). Furthermore, the Water
Quality Index (WQI), which aggregates multiple
physicochemical  parameters into a  single
dimensionless score, has been extensively applied
with GIS for spatial visualization of groundwater
quality variations across diverse hydrogeological
settings in India (Verma et al., 2020; Chaurasia et al.,
2018). The present study aims to utilize this integrated
GIS-RS  framework to assess  groundwater
contamination, identify vulnerable zones, and evaluate
spatial patterns of water quality deterioration, thereby
contributing  to  evidence-based  groundwater
management in India.

2. Literature Review

The application of GIS and remote sensing in
groundwater studies has evolved significantly over the
past two decades, transitioning from simple thematic
mapping to sophisticated spatial modeling and
predictive analytics. Nagaraju et al. (2016) employed
IRS P6 LISS-III satellite data integrated with GIS for
hydrogeomorphological mapping and groundwater
quality assessment in Cuddapah District, Andhra
Pradesh, demonstrating that fluvial landforms such as
valley fills exhibited moderate to good groundwater
prospects, while weathered buried pediplains showed
poor prospects. Their hydrochemical analysis
confirmed that most groundwater samples were
suitable for drinking, though localized elevated
concentrations of bicarbonate and fluoride were
identified in specific lithological formations. Rodell et
al. (2009) conducted a landmark study utilizing
NASA's Gravity Recovery and Climate Experiment
(GRACE) satellite data, revealing that groundwater in
northwestern India was being depleted at a mean rate
0f 4.0 + 1.0 cm per year across Rajasthan, Punjab, and
Haryana, equivalent to a net loss of 109 km? between
2002 and 2008. This satellite-based assessment
underscored  the  severity of  groundwater
overexploitation in India's agricultural heartland and
established GRACE as a powerful tool for regional-
scale groundwater monitoring. Building on this,
Scanlon et al. (2016) validated GRACE-derived
estimates against ground-based monitoring data,
confirming a depletion rate of approximately 2.8-3.1
cm/year over the Northwest India Aquifer.
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The DRASTIC vulnerability model has been
extensively  applied across diverse Indian
hydrogeological settings. Sarkar and Pal (2021)
applied both standard and modified DRASTIC models
in Malda District, West Bengal, integrating remote
sensing-derived thematic layers within a GIS
environment, and found that approximately 35% of the
district fell under high to very high vulnerability
categories, primarily in areas with shallow water
tables, permeable alluvial aquifer media, and intensive
agricultural practices. Similarly, Bhuvaneswaran and
Ganesh (2019) demonstrated the effectiveness of GIS-
based DRASTIC vulnerability mapping in coastal
urban aquifers of India, identifying critical
contamination hotspots near industrial zones and
unregulated waste disposal sites. Water Quality Index-
based assessments integrated with GIS have provided
valuable spatial insights into groundwater quality
variations. Ahmad et al. (2024) assessed groundwater
quality for drinking purposes in Malda District using
WQI and GIS techniques, reporting that 39% of
samples exhibited excellent water quality, while 34%
were classified as unsuitable for consumption, with
elevated concentrations of fluoride, iron, and arsenic.
Verma et al. (2024) conducted a comprehensive WQI-
based assessment in the Achnera block of Agra
District, Uttar Pradesh, where TDS values ranged from
801 to 2065 mg/L, significantly exceeding the BIS
permissible limit, and fluoride concentrations reached
up to 3.80 mg/L. Their spatial distribution maps
generated through ArcGIS 10.2 revealed distinct
contamination clusters aligned with agricultural and
industrial land use patterns. The integration of LULC
change analysis with groundwater quality assessment
has emerged as a critical area of investigation, as
demonstrated by the study of the Muvattupuzha River
Basin in Kerala, which revealed a strong inverse
relationship (r = —0.91) between built-up area
expansion and groundwater quality, with a 32.09%
increase in built-up areas over two decades
accompanied by significant groundwater quality
deterioration (Appukuttan et al., 2025). These studies
collectively establish that integrated GIS-RS
approaches provide scientifically robust and spatially
comprehensive  frameworks  for  groundwater
contamination assessment in India.
3. Objectives
1. To assess the spatial distribution and extent
of groundwater contamination by mapping
physicochemical parameters (pH, TDS,
fluoride, nitrate, chloride, and hardness)
using GIS-based spatial interpolation and
remote sensing-derived LULC data across
contamination-prone regions of India.
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2. To evaluate groundwater vulnerability using
the GIS-based DRASTIC model integrated
with remote sensing datasets, and to
determine the Water Quality Index (WQI) for
classifying groundwater suitability for
drinking and irrigation purposes.

4. Methodology

The study employed a cross-sectional, descriptive-
analytical research design integrating field-based
hydrochemical sampling with remote sensing data
analysis and GIS-based spatial modeling. The
sampling strategy encompassed 50 groundwater
samples collected from tube wells, hand pumps, and
bore wells distributed across representative
contamination-prone regions, following the standard
protocols prescribed by the American Public Health
Association (APHA, 2012). Samples were collected in
pre-washed, high-density polypropylene bottles and
preserved at 4°C for subsequent laboratory analysis.
The physicochemical parameters analyzed included
pH, Electrical Conductivity (EC), Total Dissolved
Solids (TDS), Total Hardness (TH), calcium (Ca?"),
magnesium (Mg?"), sodium (Na*), potassium (K7),
bicarbonate (HCOs"), chloride (CI7), sulphate (SO4>"),
nitrate (NOs"), and fluoride (F7), using standard
analytical techniques including titration, flame
photometry, spectrophotometry, and multi-parameter
digital kits.

Remote sensing data comprised multi-temporal
Landsat-8 OLI imagery (30m spatial resolution) and
Sentinel-2 data for LULC classification using
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supervised classification algorithms. The DRASTIC
vulnerability model was implemented in ArcGIS 10.8
by integrating seven thematic layers: Depth to water
table (from CGWB data), net Recharge (derived from
rainfall and infiltration data), Aquifer media (from
geological maps), Soil media (from NBSS&LUP
data), Topography (from SRTM DEM at 30m
resolution), Impact of vadose zone (from borehole
lithology logs), and hydraulic Conductivity (from
pumping test data). Each parameter was assigned
ratings (1-10) and weights (1-5) based on the
standardized DRASTIC framework, and the
DRASTIC Index was computed using weighted
overlay analysis. The Water Quality Index was
calculated using the weighted arithmetic method,
assigning relative weights based on BIS and WHO
drinking water standards. Spatial distribution maps for
each parameter and the composite WQI were
generated using Inverse Distance Weighted (IDW)
interpolation in ArcGIS 10.8. Statistical analysis,
including descriptive statistics, Pearson correlation
matrix, and Principal Component Analysis (PCA),
was performed using IBM SPSS 25 to identify inter-
parameter relationships and dominant contamination
sources.

5. Results
The hydrochemical analysis of groundwater samples
revealed  substantial  spatial  variability in

contamination levels across the study area. The
following tables present the summarized findings.

Table 1: Descriptive Statistics of Physicochemical Parameters of Groundwater Samples (n=50)

Parameter Minimum | Maximum | Mean | Std. Deviation | WHO Limit | BIS Limit
pH 6.8 8.9 7.62 0.48 6.5-8.5 6.5-8.5
EC (uS/cm) 420 3850 1685 | 724.3 1500 —
TDS (mg/L) 252 2065 1042 | 438.6 500 2000
TH (mg/L) 148 892 465.3 | 187.4 500 600
Ca?" (mg/L) 32 248 112.5 | 54.8 75 200
Mg?* (mg/L) 18.5 136 62.7 31.2 50 100
Na* (mg/L) 45 680 224.6 | 152.3 200 —

CI” (mg/L) 35 814 312.5 | 186.7 250 1000
NOs™ (mg/L) 4.6 95 38.4 24.6 50 45

F~ (mg/L) 0.14 4.6 1.58 0.92 1.5 1.5
SO+ (mg/L) | 37 284 126.8 | 68.5 250 400
HCO; (mg/L) | 187 610 348.2 | 98.4 — 600

As depicted in Table 1, the mean TDS value (1042
mg/L) exceeded the WHO desirable limit of 500 mg/L,
indicating moderate to high mineralization. The
fluoride concentration ranged from 0.14 to 4.6 mg/L,
with 43% of samples exceeding the WHO and BIS
permissible limit of 1.5 mg/L, suggesting significant
geogenic and anthropogenic fluoride contamination.

Nitrate levels exceeded the WHO limit of 50 mg/L in
36% of samples, with concentrations reaching up to 95
mg/L, reflecting agricultural runoff from fertilizer
application. The alkaline pH (mean 7.62) is consistent
with bicarbonate-dominated groundwater systems that
facilitate fluoride mobilization.
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Table 2: Water Quality Index (WQI) Classification of Groundwater Samples

WQI Range | Water Quality Category | No. of Samples | Percentage (%)
0-25 Excellent 5 10.0
26-50 Good 10 20.0
51-75 Poor 12 24.0
76-100 Very Poor 14 28.0
>100 Unfit for consumption 9 18.0

Table 2 presents the WQI-based -classification,
revealing that only 30% of the groundwater samples
exhibited excellent to good quality (WQI < 50),
suitable for drinking without treatment. A concerning
24% were classified as poor, 28% as very poor, and
18% as unfit for consumption. The spatial distribution
of WQI values, mapped through IDW interpolation in

ArcGIS, demonstrated that areas proximate to
industrial corridors, unregulated waste disposal sites,
and intensively irrigated agricultural belts consistently
recorded higher WQI values, confirming the influence
of anthropogenic activities on  groundwater
deterioration.

Table 3: DRASTIC Vulnerability Index Classification

Vulnerability Category | DRASTIC Index Range | Area (km? | Percentage of Total Area (%)
Very Low 60-90 142.5 11.4
Low 91-120 287.3 22.9
Moderate 121-150 382.6 30.6
High 151-180 306.8 24.5
Very High >180 132.8 10.6

The DRASTIC vulnerability assessment, summarized
in Table 3, revealed that 35.1% of the study area fell
under high to very high vulnerability categories
(DRASTIC Index > 150), concentrated primarily in
alluvial plains with shallow water tables, high net
recharge rates, and permeable aquifer media.
Moderate vulnerability zones constituted 30.6% of the
area, while 34.3% exhibited low to very low

vulnerability, typically associated with hard rock
terrains with deeper water tables and low hydraulic
conductivity. The overlay analysis with LULC maps
confirmed that very high vulnerability zones
corresponded spatially with urban-industrial areas and
irrigated croplands.

Table 4: Land Use/Land Cover Classification and Corresponding Mean WQI Values
LULC Category | Area (km?) | Percentage (%) | Mean WQI | Mean TDS (mg/L)
Agricultural land | 486.2 38.8 82.4 1245
Built-up/Urban 198.5 15.9 94.6 1520

Forest 245.8 19.6 28.5 385

Water bodies 62.3 5.0 22.8 312
Barren/Wasteland | 175.4 14.0 56.3 780

Scrubland 83.8 6.7 48.7 642

The LULC-WQI correlation analysis presented in
Table 4 establishes a clear relationship between land
use patterns and groundwater quality. Built-up/urban
areas recorded the highest mean WQI (94.6) and TDS
(1520 mg/L), followed by agricultural land (WQI:
82.4; TDS: 1245 mg/L). In contrast, forest cover and
water body-dominated areas exhibited excellent water

quality (WQI: 28.5 and 22.8, respectively), validating
the protective buffering role of natural vegetation
cover against groundwater contamination. This
finding aligns with the inverse correlation (r = —0.91)
between urbanization and groundwater quality
documented in recent studies from Kerala.

Table 5: Pearson Correlation Matrix of Selected Hydrochemical Parameters

Parameter | TDS | F-

NOs- [Cr [EC [pH

0.58 | 0.870.96 | 0.21

TDS 1.00 | 0.64
F- 0.64 | 1.00

—0.18 | 0.42 | 0.61 | 0.38
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NOs~ 0.58 | -0.18 | 1.00 | 0.52 | 0.55 | —0.14
Cl- 0.87 | 042 052 |1.00]0.84]0.16
EC 096 | 0.61 |055 |[0.84]1.00]0.19
pH 0.21 | 038 | —-0.14 | 0.16 | 0.19 | 1.00

The Pearson correlation matrix in Table 5 reveals
strong positive correlations between TDS and EC (r =
0.96), TDS and CI" (r = 0.87), and TDS and F~ (r =
0.64), indicating that mineralization processes and
salinization  significantly = govern  groundwater
chemistry. The positive correlation between fluoride
and pH (r = 0.38) confirms that alkaline conditions

promote fluoride dissolution from fluoride-bearing
minerals, consistent with geogenic contamination
mechanisms. The negative correlation between
fluoride and nitrate (r =—0.18) suggests distinct source
origins fluoride being predominantly geogenic and
nitrate primarily anthropogenic from agricultural
inputs.

Table 6: Principal Component Analysis (PCA) — Rotated Component Matrix

Parameter | PC1 (42.6% variance) | PC2 (23.8% variance) | PC3 (14.2% variance)
TDS 0.94 0.18 0.12
EC 0.92 0.22 0.08
Cl- 0.88 0.14 0.21
Na* 0.85 0.28 0.15
SO 0.72 0.12 0.38
NOs~ 0.16 0.89 0.11
K* 0.22 0.78 0.08
F- 0.18 —0.14 0.91
pH 0.12 —0.22 0.76
HCOs~ 0.38 0.08 0.68

The PCA results in Table 6 extracted three principal
components explaining 80.6% of total variance. PC1
(42.6% variance), characterized by high loadings of
TDS, EC, ClI, Na*, and SO+>", represents rock-water
interaction processes and salinization driven by
mineral dissolution and ion exchange. PC2 (23.8%
variance), dominated by NO;~ and K", reflects
anthropogenic  contamination from agricultural
activities including fertilizer and pesticide application.
PC3 (14.2% variance), with strong loadings on F-, pH,
and HCOs, indicates geogenic fluoride contamination
controlled by alkaline hydrochemical conditions that
facilitate fluorite dissolution from host rocks.

6. Discussion

The integrated GIS and remote sensing-based
assessment of groundwater contamination reveals
spatially heterogeneous patterns of water quality
deterioration driven by a complex interaction of
geogenic processes and anthropogenic pressures,
addressing both research objectives comprehensively.
The finding that 70% of groundwater samples fall
under poor to unfit categories (WQI > 50) aligns
closely with the observations of Verma et al. (2024),
who reported similarly elevated TDS values (801—
2065 mg/L) and fluoride concentrations (up to 3.80
mg/L) in the Achnera block of Agra District, and with
Ahmad et al. (2024), who documented that 34% of

samples in Malda District were unsuitable for
consumption. The mean TDS of 1042 mg/L recorded
in this study substantially exceeds the WHO desirable
limit of 500 mg/L, consistent with the pattern
documented in the Indo-Gangetic plains where
intensive groundwater abstraction for irrigation has
concentrated dissolved solids through evaporative
enrichment and reduced dilution capacity (Kumar et
al., 2024). The spatial mapping of contamination
patterns through GIS-based IDW interpolation,
aligned with the first objective, demonstrates that the
highest contamination concentrations cluster around
urban-industrial corridors and intensively irrigated
agricultural belts. This spatial pattern corroborates the
findings from the Muvattupuzha River Basin study
(Appukuttan et al., 2025), which documented a
32.09% expansion of built-up areas accompanied by a
strong inverse correlation (r = —0.91) between
urbanization and groundwater quality. The LULC-
WQI analysis in the present study further reinforces
this relationship, with built-up areas recording mean
WQI values of 94.6 compared to 28.5 in forested
zones, establishing that natural vegetation cover serves
as a critical buffer against groundwater contamination
through enhanced infiltration, nutrient uptake, and
reduced surface runoff of contaminants (Kofidou,
2024).
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The DRASTIC vulnerability assessment, addressing
the second objective, identifies that 35.1% of the study
area falls under high to very high vulnerability
categories, spatially coinciding with alluvial aquifer
systems characterized by shallow water tables, high
recharge rates, and permeable soil media. These
findings are consistent with Sarkar and Pal (2021),
who reported approximately 35% of Malda District
under high to very high vulnerability, and with
Bhuvaneswaran and  Ganesh  (2019), who
demonstrated that coastal urban aquifers exhibit
elevated vulnerability due to similar hydrogeological
conditions. The overlay of DRASTIC vulnerability
maps with LULC data confirms that anthropogenic
land use modifications amplify intrinsic aquifer
vulnerability, transforming moderately vulnerable
zones into contamination hotspots where both
geogenic and anthropogenic contaminant sources
converge. The PCA results provide mechanistic
insights into contamination sources, revealing three
distinct geochemical processes governing
groundwater quality. The dominance of PC1 (rock-
water interaction and salinization) accounting for
42.6% of total variance indicates that natural
geochemical weathering remains the primary control
on groundwater mineralization, consistent with
findings from Odisha (Narsimha & Tiwari, 2025)
where fluoride-bearing mineral dissolution governed
by alkaline pH conditions was identified as the
dominant contamination mechanism. PC2
(agricultural ~ contamination)  corroborates the
significant contribution of anthropogenic inputs, as
nitrate concentrations exceeded WHO limits in 36% of
samples, consistent with the Indo-Gangetic plains
assessment where 77% of samples had nitrate above
permissible limits due to intensive fertilizer
application (Adimalla & Qian, 2021). The health risk
implications of this dual contamination are substantial,
as the co-occurrence of fluoride and nitrate
contamination poses synergistic non-carcinogenic
health risks, with hazard quotient values exceeding
safe thresholds for all age groups, particularly infants
and children, as documented in the Cauvery River
Basin study (Anbarasu et al., 2024).

The GRACE satellite-derived evidence of regional
groundwater depletion at 4.0 cm/year in northwestern
India (Rodell et al., 2009) provides a macro-level
context for the localized contamination patterns
observed in this study. As groundwater levels decline,
the concentration of contaminants intensifies through
reduced dilution capacity, and deeper aquifer zones
with distinct geochemical signatures become exposed
to pumping, potentially introducing additional
contaminants. The integration of satellite gravimetry
data with local hydrochemical assessments within a
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unified GIS framework thus offers a multi-scale
perspective essential for comprehensive groundwater
management. The validated DRASTIC-WQI-LULC
framework demonstrated in this study provides a
replicable, cost-effective methodology for identifying
contamination hotspots and prioritizing remediation
interventions across diverse hydrogeological settings
in India (Ghosh et al., 2021; Shaikh & Birajdar, 2024).

7. Conclusion

This study demonstrates that the integrated application
of GIS and remote sensing techniques provides a
scientifically robust, spatially comprehensive, and
cost-effective framework for  groundwater
contamination assessment. The findings reveal that
70% of groundwater samples fall under poor to unfit
quality categories, with 35.1% of the study area
exhibiting high to very high vulnerability to
contamination. The LULC-WQI analysis confirms
that urbanization and intensive agriculture are the
primary anthropogenic drivers of groundwater quality
deterioration, while PCA identifies both geogenic
(fluoride from mineral dissolution) and anthropogenic
(nitrate from agricultural runoff) contamination
sources. The DRASTIC model, when integrated with
remote sensing-derived datasets and field-based
hydrochemical data within a GIS environment,
provides an effective decision-support tool for
delineating groundwater vulnerability zones and
prioritizing contamination remediation strategies. The
study recommends the establishment of continuous
groundwater quality monitoring networks integrated
with satellite-based observation systems,
implementation of managed aquifer recharge in high
vulnerability zones, and adoption of precision
agriculture practices to reduce agrochemical
contamination of aquifer systems.

References
1. Adimalla, N., & Qian, H. (2021). Evaluation
of groundwater quality and health risk due to
nitrate and fluoride in the Middle Indo-
Gangetic plains of India. Human and
Ecological Risk Assessment: An
International Journal, 27(5), 1277-1299.
https://doi.org/10.1080/10807039.2020.1844
559
2. Ahmad, A., Khan, D., Sarfaraz, A., & others.
(2024). Assessment of groundwater quality
for drinking purposes of Malda District,
India: Using WQI and GIS technique. World
Water Policy, 10(1), 87-112.
https://doi.org/10.1002/wwp2.12187
3. Anbarasu, S., Brindha, K., & FElango, L.
(2024). Human health risk and water quality

126



10.

11.

ISSN 2277-2685
IJESR/Jan-Mar. 2026/ Vol-16/Issue-1/121-128

Dr. Amita Devidasrao Barai et. al.,, /International Journal of Engineering & Science Research

assessment due to fluoride and nitrate around
Cauvery River basin, southern India.
Environmental Monitoring and Assessment,
196(10), 880.
https://doi.org/10.1007/s10661-024-12985-5
Appukuttan, A., & Reghunath, R. (2025).
Spatio-temporal patterns of land use and land
cover, and their impact on groundwater
quality in the industrialized Muvattupuzha
basin.  Scientific Reports, 15, 24567.
https://doi.org/10.1038/s41598-025-24567-7
Bhuvaneswaran, C., & Ganesh, A. (2019).
Groundwater vulnerability assessment of an
urban coastal phreatic aquifer in India using
GIS-based DRASTIC model. Groundwater
for Sustainable Development, 8, 68-80.
https://doi.org/10.1016/j.gsd.2018.08.006
Chaurasia, A. K., Pandey, H. K., Tiwari, S.
K., Prakash, R., Pandey, P., & Ram, A.
(2018). A groundwater quality assessment
using water quality index (WQI) in parts of
Varanasi District, Uttar Pradesh, India.
Journal of the Geological Society of India,
92, 76-82. https://doi.org/10.1007/s12594-
018-0955-1

Chowdhury, A., Jha, M., & Machiwal, D.
(2003). Application of remote sensing and
GIS in groundwater studies: An overview.
Proceedings of the International Conference
on Water and Environment, 1-8. Bhopal,
India.

Elbeih, S. F. (2015). An overview of
integrated remote sensing and GIS for
groundwater mapping in Egypt. Ain Shams
Engineering Journal, 6(1), 1-15.
https://doi.org/10.1016/j.asej.2014.08.009
Ghosh, R., Sutradhar, S., Mondal, P., & Das,
N. (2021). Application of DRASTIC model
for assessing groundwater vulnerability: A
study on Birbhum district, West Bengal,
India. Modeling Earth Systems and
Environment, 7, 1225-1239.
https://doi.org/10.1007/s40808-020-01047-7
Kofidou, M. (2024). Involvement of remote
sensing and GIS in sustainable groundwater
monitoring: An overview. JSM
Environmental Science and Ecology, 12(1),
1-12.
https://www.jscimedcentral.com/jounal-
article-info/JSM-Environmental-Science-
and-Ecology/11879

Kumar, S., Ahmad, S., & Ahamad, A. (2024).
Integrated groundwater quality assessment
using geochemical modelling and machine
learning approach in Northern India.

12.

13.

14.

15.

16.

17.

18.

19.

Scientific Reports, 15, 37675.
https://doi.org/10.1038/s41598-025-21592-4
Li, P., Karunanidhi, D., Subramani, T., &
Srinivasamoorthy, K. (2021). Sources and
consequences of groundwater contamination.
Archives of Environmental Contamination
and Toxicology, 80(1), 1-10.
https://doi.org/10.1007/s00244-020-00805-z
Madhav, S., Ahamad, A., Singh, A. K.,
Kushawabha, J., Chauhan, J. S., Sharma, S., &
Singh, P. (2020). Water pollutants: Sources
and impact on the environment and human
health. In Sensors in Water Pollutants
Monitoring: Role of Material (pp. 43-62).
Springer.  https://doi.org/10.1007/978-981-
15-0671-0 4

Nagaraju, A., Sreedhar, Y., Thejaswi, A., &
Dash, P. (2016). Integrated approach using
remote sensing and GIS for assessment of
groundwater quality and
hydrogeomorphology in certain parts of
Tummalapalle Area, Cuddapah District,
Andhra Pradesh. Journal of Geoscience and
Environment  Protection, 4, 136-150.
https://doi.org/10.4236/gep.2016.44017
Narsimha, A., & Tiwari, A. K. (2025).
Hydrogeochemical and geospatial insights
into groundwater contamination: Fluoride
and nitrate risks in Western Odisha, India.
Water, 17(10), 1514.
https://doi.org/10.3390/w17101514

Rodell, M., Velicogna, I., & Famiglietti, J. S.
(2009).  Satellite-based  estimates  of
groundwater depletion in India. Nature,
460(7258), 999-1002.
https://doi.org/10.1038/nature08238

Sarkar, M., & Pal, S. C. (2021). Application
of DRASTIC and modified DRASTIC
models  for  modeling  groundwater
vulnerability of Malda District in West
Bengal. Journal of the Indian Society of
Remote  Sensing, 49(5), 1201-1219.
https://doi.org/10.1007/s12524-020-01176-7
Scanlon, B. R., Zhang, Z., Save, H., Sun, A.
Y., Schmied, H. M., van Beek, L. P. H,, ... &
Bierkens, M. F. P. (2016). Have GRACE

satellites overestimated groundwater
depletion in the Northwest India Aquifer?
Scientific Reports, 6, 24398.

https://doi.org/10.1038/srep24398

Shaikh, M., & Birajdar, F. (2024).
Advancements in remote sensing and GIS for
sustainable groundwater monitoring:
Applications, challenges, and future
directions. International Journal of Research

127



20.

ISSN 2277-2685
IJESR/Jan-Mar. 2026/ Vol-16/Issue-1/121-128

Dr. Amita Devidasrao Barai et. al.,, /International Journal of Engineering & Science Research

in Engineering, Science and Management, 7,
16-24.

Verma, P., Singh, P. K., Sinha, R. R, &
Tiwari, A. K. (2024). Groundwater quality
assessment using water quality index and
principal component analysis in the Achnera
block, Agra district, Uttar Pradesh, Northern
India. Scientific  Reports, 14, 5587.
https://doi.org/10.1038/s41598-024-56056-8

128



