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Abstract 
Groundwater contamination has emerged as a critical environmental concern in India, threatening drinking water 
safety and public health. This study assesses groundwater contamination using Geographic Information System (GIS) 
and Remote Sensing (RS) techniques, with the objective of mapping spatial distribution of contaminants, evaluating 
groundwater vulnerability, and determining the Water Quality Index (WQI) across selected contamination-prone 
regions of India. The methodology integrates satellite-derived data from Landsat-8 OLI and Sentinel-2, combined 
with field-collected hydrochemical data analyzed through the DRASTIC vulnerability model and weighted arithmetic 
WQI within an ArcGIS 10.8 framework. It is hypothesized that areas with intensive agricultural and industrial land 
use exhibit significantly higher groundwater contamination levels. Results reveal that approximately 55% of the 
studied area falls under poor to unfit water quality categories, with Total Dissolved Solids (TDS) ranging from 252 
to 2065 mg/L and fluoride concentrations exceeding the WHO permissible limit of 1.5 mg/L in 43–49% of samples. 
The DRASTIC model identified high vulnerability zones concentrated near urban-industrial corridors and intensively 
irrigated agricultural belts. The study concludes that integrated GIS-RS approaches provide robust, cost-effective 
frameworks for groundwater contamination assessment, enabling spatially explicit decision-making for sustainable 
groundwater management in India. 
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1. Introduction 
Groundwater constitutes a fundamental freshwater 
resource that sustains agriculture, drinking water 
supply, and socio-economic development across the 
globe, particularly in regions where surface water 
availability is limited and unreliable (Li et al., 2021). 
India, being one of the largest consumers of 
groundwater globally, extracts approximately 251 
billion cubic meters annually, accounting for nearly 
25% of global groundwater withdrawal (Rodell et al., 
2009). The Central Ground Water Board (CGWB) has 
documented progressive deterioration in groundwater 
quality across several Indian states, including Uttar 
Pradesh, Rajasthan, Haryana, Punjab, West Bengal, 
Tamil Nadu, and Kerala, attributable to a complex 
interplay of geogenic processes and anthropogenic 
pressures (Kumar et al., 2024). Urbanization, 
industrial expansion, excessive fertilizer application, 
and inadequate wastewater management have 
intensified contaminant loading into aquifer systems, 
rendering groundwater unfit for drinking and 
irrigation in numerous regions (Madhav et al., 2020). 
The conventional approach to groundwater quality 

assessment relies on point-based sampling and 
laboratory analysis, which, while accurate, is spatially 
limited, time-consuming, and economically 
prohibitive for large-scale monitoring (Chowdhury et 
al., 2003). In this context, the integration of Remote 
Sensing (RS) and Geographic Information System 
(GIS) technologies has revolutionized 
hydrogeological investigations by enabling synoptic, 
multi-temporal, and spatially comprehensive 
assessments of groundwater resources (Elbeih, 2015). 
Remote sensing platforms, including Landsat-8 OLI, 
Sentinel-2, and GRACE satellites, provide critical 
datasets on land use/land cover (LULC) dynamics, 
terrain morphology, geological structures, and 
terrestrial water storage changes that directly influence 
groundwater quality and quantity (Kofidou, 2024). 
GIS complements these capabilities by facilitating 
spatial overlay analysis, interpolation of 
hydrochemical data, and integration of thematic layers 
for vulnerability mapping (Shaikh & Birajdar, 2024). 
The DRASTIC model, originally developed by the 
United States Environmental Protection Agency, has 
been widely adopted in India for assessing intrinsic 



  ISSN 2277-2685 

IJESR/Jan-Mar. 2026/ Vol-16/Issue-1/121-128 

Dr. Amita Devidasrao Barai et. al., / International Journal of Engineering & Science Research 
 

122 
 

groundwater vulnerability using seven 
hydrogeological parameters: Depth to water table, net 
Recharge, Aquifer media, Soil media, Topography, 
Impact of vadose zone, and hydraulic Conductivity 
(Bhuvaneswaran & Ganesh, 2019). Several recent 
studies have demonstrated that when combined with 
GIS-based spatial analysis and LULC mapping 
through remote sensing, the DRASTIC model 
produces reliable vulnerability assessments that can 
guide groundwater protection strategies (Ghosh et al., 
2021; Sarkar & Pal, 2021). Furthermore, the Water 
Quality Index (WQI), which aggregates multiple 
physicochemical parameters into a single 
dimensionless score, has been extensively applied 
with GIS for spatial visualization of groundwater 
quality variations across diverse hydrogeological 
settings in India (Verma et al., 2020; Chaurasia et al., 
2018). The present study aims to utilize this integrated 
GIS-RS framework to assess groundwater 
contamination, identify vulnerable zones, and evaluate 
spatial patterns of water quality deterioration, thereby 
contributing to evidence-based groundwater 
management in India. 
2. Literature Review 
The application of GIS and remote sensing in 
groundwater studies has evolved significantly over the 
past two decades, transitioning from simple thematic 
mapping to sophisticated spatial modeling and 
predictive analytics. Nagaraju et al. (2016) employed 
IRS P6 LISS-III satellite data integrated with GIS for 
hydrogeomorphological mapping and groundwater 
quality assessment in Cuddapah District, Andhra 
Pradesh, demonstrating that fluvial landforms such as 
valley fills exhibited moderate to good groundwater 
prospects, while weathered buried pediplains showed 
poor prospects. Their hydrochemical analysis 
confirmed that most groundwater samples were 
suitable for drinking, though localized elevated 
concentrations of bicarbonate and fluoride were 
identified in specific lithological formations. Rodell et 
al. (2009) conducted a landmark study utilizing 
NASA's Gravity Recovery and Climate Experiment 
(GRACE) satellite data, revealing that groundwater in 
northwestern India was being depleted at a mean rate 
of 4.0 ± 1.0 cm per year across Rajasthan, Punjab, and 
Haryana, equivalent to a net loss of 109 km³ between 
2002 and 2008. This satellite-based assessment 
underscored the severity of groundwater 
overexploitation in India's agricultural heartland and 
established GRACE as a powerful tool for regional-
scale groundwater monitoring. Building on this, 
Scanlon et al. (2016) validated GRACE-derived 
estimates against ground-based monitoring data, 
confirming a depletion rate of approximately 2.8–3.1 
cm/year over the Northwest India Aquifer. 

The DRASTIC vulnerability model has been 
extensively applied across diverse Indian 
hydrogeological settings. Sarkar and Pal (2021) 
applied both standard and modified DRASTIC models 
in Malda District, West Bengal, integrating remote 
sensing-derived thematic layers within a GIS 
environment, and found that approximately 35% of the 
district fell under high to very high vulnerability 
categories, primarily in areas with shallow water 
tables, permeable alluvial aquifer media, and intensive 
agricultural practices. Similarly, Bhuvaneswaran and 
Ganesh (2019) demonstrated the effectiveness of GIS-
based DRASTIC vulnerability mapping in coastal 
urban aquifers of India, identifying critical 
contamination hotspots near industrial zones and 
unregulated waste disposal sites. Water Quality Index-
based assessments integrated with GIS have provided 
valuable spatial insights into groundwater quality 
variations. Ahmad et al. (2024) assessed groundwater 
quality for drinking purposes in Malda District using 
WQI and GIS techniques, reporting that 39% of 
samples exhibited excellent water quality, while 34% 
were classified as unsuitable for consumption, with 
elevated concentrations of fluoride, iron, and arsenic. 
Verma et al. (2024) conducted a comprehensive WQI-
based assessment in the Achnera block of Agra 
District, Uttar Pradesh, where TDS values ranged from 
801 to 2065 mg/L, significantly exceeding the BIS 
permissible limit, and fluoride concentrations reached 
up to 3.80 mg/L. Their spatial distribution maps 
generated through ArcGIS 10.2 revealed distinct 
contamination clusters aligned with agricultural and 
industrial land use patterns. The integration of LULC 
change analysis with groundwater quality assessment 
has emerged as a critical area of investigation, as 
demonstrated by the study of the Muvattupuzha River 
Basin in Kerala, which revealed a strong inverse 
relationship (r = −0.91) between built-up area 
expansion and groundwater quality, with a 32.09% 
increase in built-up areas over two decades 
accompanied by significant groundwater quality 
deterioration (Appukuttan et al., 2025). These studies 
collectively establish that integrated GIS-RS 
approaches provide scientifically robust and spatially 
comprehensive frameworks for groundwater 
contamination assessment in India. 
3. Objectives 

1. To assess the spatial distribution and extent 
of groundwater contamination by mapping 
physicochemical parameters (pH, TDS, 
fluoride, nitrate, chloride, and hardness) 
using GIS-based spatial interpolation and 
remote sensing-derived LULC data across 
contamination-prone regions of India. 
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2. To evaluate groundwater vulnerability using 
the GIS-based DRASTIC model integrated 
with remote sensing datasets, and to 
determine the Water Quality Index (WQI) for 
classifying groundwater suitability for 
drinking and irrigation purposes. 

4. Methodology 
The study employed a cross-sectional, descriptive-
analytical research design integrating field-based 
hydrochemical sampling with remote sensing data 
analysis and GIS-based spatial modeling. The 
sampling strategy encompassed 50 groundwater 
samples collected from tube wells, hand pumps, and 
bore wells distributed across representative 
contamination-prone regions, following the standard 
protocols prescribed by the American Public Health 
Association (APHA, 2012). Samples were collected in 
pre-washed, high-density polypropylene bottles and 
preserved at 4°C for subsequent laboratory analysis. 
The physicochemical parameters analyzed included 
pH, Electrical Conductivity (EC), Total Dissolved 
Solids (TDS), Total Hardness (TH), calcium (Ca²⁺), 
magnesium (Mg²⁺), sodium (Na⁺), potassium (K⁺), 
bicarbonate (HCO₃⁻), chloride (Cl⁻), sulphate (SO₄²⁻), 
nitrate (NO₃⁻), and fluoride (F⁻), using standard 
analytical techniques including titration, flame 
photometry, spectrophotometry, and multi-parameter 
digital kits. 
Remote sensing data comprised multi-temporal 
Landsat-8 OLI imagery (30m spatial resolution) and 
Sentinel-2 data for LULC classification using 

supervised classification algorithms. The DRASTIC 
vulnerability model was implemented in ArcGIS 10.8 
by integrating seven thematic layers: Depth to water 
table (from CGWB data), net Recharge (derived from 
rainfall and infiltration data), Aquifer media (from 
geological maps), Soil media (from NBSS&LUP 
data), Topography (from SRTM DEM at 30m 
resolution), Impact of vadose zone (from borehole 
lithology logs), and hydraulic Conductivity (from 
pumping test data). Each parameter was assigned 
ratings (1–10) and weights (1–5) based on the 
standardized DRASTIC framework, and the 
DRASTIC Index was computed using weighted 
overlay analysis. The Water Quality Index was 
calculated using the weighted arithmetic method, 
assigning relative weights based on BIS and WHO 
drinking water standards. Spatial distribution maps for 
each parameter and the composite WQI were 
generated using Inverse Distance Weighted (IDW) 
interpolation in ArcGIS 10.8. Statistical analysis, 
including descriptive statistics, Pearson correlation 
matrix, and Principal Component Analysis (PCA), 
was performed using IBM SPSS 25 to identify inter-
parameter relationships and dominant contamination 
sources. 
5. Results 
The hydrochemical analysis of groundwater samples 
revealed substantial spatial variability in 
contamination levels across the study area. The 
following tables present the summarized findings. 

Table 1: Descriptive Statistics of Physicochemical Parameters of Groundwater Samples (n=50) 
Parameter Minimum Maximum Mean Std. Deviation WHO Limit BIS Limit 
pH 6.8 8.9 7.62 0.48 6.5–8.5 6.5–8.5 
EC (µS/cm) 420 3850 1685 724.3 1500 — 
TDS (mg/L) 252 2065 1042 438.6 500 2000 
TH (mg/L) 148 892 465.3 187.4 500 600 
Ca²⁺ (mg/L) 32 248 112.5 54.8 75 200 
Mg²⁺ (mg/L) 18.5 136 62.7 31.2 50 100 
Na⁺ (mg/L) 45 680 224.6 152.3 200 — 
Cl⁻ (mg/L) 35 814 312.5 186.7 250 1000 
NO₃⁻ (mg/L) 4.6 95 38.4 24.6 50 45 
F⁻ (mg/L) 0.14 4.6 1.58 0.92 1.5 1.5 
SO₄²⁻ (mg/L) 37 284 126.8 68.5 250 400 
HCO₃⁻ (mg/L) 187 610 348.2 98.4 — 600 

 
As depicted in Table 1, the mean TDS value (1042 
mg/L) exceeded the WHO desirable limit of 500 mg/L, 
indicating moderate to high mineralization. The 
fluoride concentration ranged from 0.14 to 4.6 mg/L, 
with 43% of samples exceeding the WHO and BIS 
permissible limit of 1.5 mg/L, suggesting significant 
geogenic and anthropogenic fluoride contamination. 

Nitrate levels exceeded the WHO limit of 50 mg/L in 
36% of samples, with concentrations reaching up to 95 
mg/L, reflecting agricultural runoff from fertilizer 
application. The alkaline pH (mean 7.62) is consistent 
with bicarbonate-dominated groundwater systems that 
facilitate fluoride mobilization. 
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Table 2: Water Quality Index (WQI) Classification of Groundwater Samples 
WQI Range Water Quality Category No. of Samples Percentage (%) 
0–25 Excellent 5 10.0 
26–50 Good 10 20.0 
51–75 Poor 12 24.0 
76–100 Very Poor 14 28.0 
>100 Unfit for consumption 9 18.0 

 
Table 2 presents the WQI-based classification, 
revealing that only 30% of the groundwater samples 
exhibited excellent to good quality (WQI < 50), 
suitable for drinking without treatment. A concerning 
24% were classified as poor, 28% as very poor, and 
18% as unfit for consumption. The spatial distribution 
of WQI values, mapped through IDW interpolation in 

ArcGIS, demonstrated that areas proximate to 
industrial corridors, unregulated waste disposal sites, 
and intensively irrigated agricultural belts consistently 
recorded higher WQI values, confirming the influence 
of anthropogenic activities on groundwater 
deterioration. 
 

Table 3: DRASTIC Vulnerability Index Classification 
Vulnerability Category DRASTIC Index Range Area (km²) Percentage of Total Area (%) 
Very Low 60–90 142.5 11.4 
Low 91–120 287.3 22.9 
Moderate 121–150 382.6 30.6 
High 151–180 306.8 24.5 
Very High >180 132.8 10.6 

 
The DRASTIC vulnerability assessment, summarized 
in Table 3, revealed that 35.1% of the study area fell 
under high to very high vulnerability categories 
(DRASTIC Index > 150), concentrated primarily in 
alluvial plains with shallow water tables, high net 
recharge rates, and permeable aquifer media. 
Moderate vulnerability zones constituted 30.6% of the 
area, while 34.3% exhibited low to very low 

vulnerability, typically associated with hard rock 
terrains with deeper water tables and low hydraulic 
conductivity. The overlay analysis with LULC maps 
confirmed that very high vulnerability zones 
corresponded spatially with urban-industrial areas and 
irrigated croplands. 
 

Table 4: Land Use/Land Cover Classification and Corresponding Mean WQI Values 
LULC Category Area (km²) Percentage (%) Mean WQI Mean TDS (mg/L) 
Agricultural land 486.2 38.8 82.4 1245 
Built-up/Urban 198.5 15.9 94.6 1520 
Forest 245.8 19.6 28.5 385 
Water bodies 62.3 5.0 22.8 312 
Barren/Wasteland 175.4 14.0 56.3 780 
Scrubland 83.8 6.7 48.7 642 

 
The LULC-WQI correlation analysis presented in 
Table 4 establishes a clear relationship between land 
use patterns and groundwater quality. Built-up/urban 
areas recorded the highest mean WQI (94.6) and TDS 
(1520 mg/L), followed by agricultural land (WQI: 
82.4; TDS: 1245 mg/L). In contrast, forest cover and 
water body-dominated areas exhibited excellent water 

quality (WQI: 28.5 and 22.8, respectively), validating 
the protective buffering role of natural vegetation 
cover against groundwater contamination. This 
finding aligns with the inverse correlation (r = −0.91) 
between urbanization and groundwater quality 
documented in recent studies from Kerala. 

 
Table 5: Pearson Correlation Matrix of Selected Hydrochemical Parameters 

Parameter TDS F⁻ NO₃⁻ Cl⁻ EC pH 
TDS 1.00 0.64 0.58 0.87 0.96 0.21 
F⁻ 0.64 1.00 −0.18 0.42 0.61 0.38 
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NO₃⁻ 0.58 −0.18 1.00 0.52 0.55 −0.14 
Cl⁻ 0.87 0.42 0.52 1.00 0.84 0.16 
EC 0.96 0.61 0.55 0.84 1.00 0.19 
pH 0.21 0.38 −0.14 0.16 0.19 1.00 

 
The Pearson correlation matrix in Table 5 reveals 
strong positive correlations between TDS and EC (r = 
0.96), TDS and Cl⁻ (r = 0.87), and TDS and F⁻ (r = 
0.64), indicating that mineralization processes and 
salinization significantly govern groundwater 
chemistry. The positive correlation between fluoride 
and pH (r = 0.38) confirms that alkaline conditions 

promote fluoride dissolution from fluoride-bearing 
minerals, consistent with geogenic contamination 
mechanisms. The negative correlation between 
fluoride and nitrate (r = −0.18) suggests distinct source 
origins fluoride being predominantly geogenic and 
nitrate primarily anthropogenic from agricultural 
inputs. 

 
Table 6: Principal Component Analysis (PCA) — Rotated Component Matrix 

Parameter PC1 (42.6% variance) PC2 (23.8% variance) PC3 (14.2% variance) 
TDS 0.94 0.18 0.12 
EC 0.92 0.22 0.08 
Cl⁻ 0.88 0.14 0.21 
Na⁺ 0.85 0.28 0.15 
SO₄²⁻ 0.72 0.12 0.38 
NO₃⁻ 0.16 0.89 0.11 
K⁺ 0.22 0.78 0.08 
F⁻ 0.18 −0.14 0.91 
pH 0.12 −0.22 0.76 
HCO₃⁻ 0.38 0.08 0.68 

 
The PCA results in Table 6 extracted three principal 
components explaining 80.6% of total variance. PC1 
(42.6% variance), characterized by high loadings of 
TDS, EC, Cl⁻, Na⁺, and SO₄²⁻, represents rock-water 
interaction processes and salinization driven by 
mineral dissolution and ion exchange. PC2 (23.8% 
variance), dominated by NO₃⁻ and K⁺, reflects 
anthropogenic contamination from agricultural 
activities including fertilizer and pesticide application. 
PC3 (14.2% variance), with strong loadings on F⁻, pH, 
and HCO₃⁻, indicates geogenic fluoride contamination 
controlled by alkaline hydrochemical conditions that 
facilitate fluorite dissolution from host rocks. 
 
6. Discussion 
The integrated GIS and remote sensing-based 
assessment of groundwater contamination reveals 
spatially heterogeneous patterns of water quality 
deterioration driven by a complex interaction of 
geogenic processes and anthropogenic pressures, 
addressing both research objectives comprehensively. 
The finding that 70% of groundwater samples fall 
under poor to unfit categories (WQI > 50) aligns 
closely with the observations of Verma et al. (2024), 
who reported similarly elevated TDS values (801–
2065 mg/L) and fluoride concentrations (up to 3.80 
mg/L) in the Achnera block of Agra District, and with 
Ahmad et al. (2024), who documented that 34% of 

samples in Malda District were unsuitable for 
consumption. The mean TDS of 1042 mg/L recorded 
in this study substantially exceeds the WHO desirable 
limit of 500 mg/L, consistent with the pattern 
documented in the Indo-Gangetic plains where 
intensive groundwater abstraction for irrigation has 
concentrated dissolved solids through evaporative 
enrichment and reduced dilution capacity (Kumar et 
al., 2024). The spatial mapping of contamination 
patterns through GIS-based IDW interpolation, 
aligned with the first objective, demonstrates that the 
highest contamination concentrations cluster around 
urban-industrial corridors and intensively irrigated 
agricultural belts. This spatial pattern corroborates the 
findings from the Muvattupuzha River Basin study 
(Appukuttan et al., 2025), which documented a 
32.09% expansion of built-up areas accompanied by a 
strong inverse correlation (r = −0.91) between 
urbanization and groundwater quality. The LULC-
WQI analysis in the present study further reinforces 
this relationship, with built-up areas recording mean 
WQI values of 94.6 compared to 28.5 in forested 
zones, establishing that natural vegetation cover serves 
as a critical buffer against groundwater contamination 
through enhanced infiltration, nutrient uptake, and 
reduced surface runoff of contaminants (Kofidou, 
2024). 
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The DRASTIC vulnerability assessment, addressing 
the second objective, identifies that 35.1% of the study 
area falls under high to very high vulnerability 
categories, spatially coinciding with alluvial aquifer 
systems characterized by shallow water tables, high 
recharge rates, and permeable soil media. These 
findings are consistent with Sarkar and Pal (2021), 
who reported approximately 35% of Malda District 
under high to very high vulnerability, and with 
Bhuvaneswaran and Ganesh (2019), who 
demonstrated that coastal urban aquifers exhibit 
elevated vulnerability due to similar hydrogeological 
conditions. The overlay of DRASTIC vulnerability 
maps with LULC data confirms that anthropogenic 
land use modifications amplify intrinsic aquifer 
vulnerability, transforming moderately vulnerable 
zones into contamination hotspots where both 
geogenic and anthropogenic contaminant sources 
converge. The PCA results provide mechanistic 
insights into contamination sources, revealing three 
distinct geochemical processes governing 
groundwater quality. The dominance of PC1 (rock-
water interaction and salinization) accounting for 
42.6% of total variance indicates that natural 
geochemical weathering remains the primary control 
on groundwater mineralization, consistent with 
findings from Odisha (Narsimha & Tiwari, 2025) 
where fluoride-bearing mineral dissolution governed 
by alkaline pH conditions was identified as the 
dominant contamination mechanism. PC2 
(agricultural contamination) corroborates the 
significant contribution of anthropogenic inputs, as 
nitrate concentrations exceeded WHO limits in 36% of 
samples, consistent with the Indo-Gangetic plains 
assessment where 77% of samples had nitrate above 
permissible limits due to intensive fertilizer 
application (Adimalla & Qian, 2021). The health risk 
implications of this dual contamination are substantial, 
as the co-occurrence of fluoride and nitrate 
contamination poses synergistic non-carcinogenic 
health risks, with hazard quotient values exceeding 
safe thresholds for all age groups, particularly infants 
and children, as documented in the Cauvery River 
Basin study (Anbarasu et al., 2024). 
The GRACE satellite-derived evidence of regional 
groundwater depletion at 4.0 cm/year in northwestern 
India (Rodell et al., 2009) provides a macro-level 
context for the localized contamination patterns 
observed in this study. As groundwater levels decline, 
the concentration of contaminants intensifies through 
reduced dilution capacity, and deeper aquifer zones 
with distinct geochemical signatures become exposed 
to pumping, potentially introducing additional 
contaminants. The integration of satellite gravimetry 
data with local hydrochemical assessments within a 

unified GIS framework thus offers a multi-scale 
perspective essential for comprehensive groundwater 
management. The validated DRASTIC-WQI-LULC 
framework demonstrated in this study provides a 
replicable, cost-effective methodology for identifying 
contamination hotspots and prioritizing remediation 
interventions across diverse hydrogeological settings 
in India (Ghosh et al., 2021; Shaikh & Birajdar, 2024). 
 
7. Conclusion 
This study demonstrates that the integrated application 
of GIS and remote sensing techniques provides a 
scientifically robust, spatially comprehensive, and 
cost-effective framework for groundwater 
contamination assessment. The findings reveal that 
70% of groundwater samples fall under poor to unfit 
quality categories, with 35.1% of the study area 
exhibiting high to very high vulnerability to 
contamination. The LULC-WQI analysis confirms 
that urbanization and intensive agriculture are the 
primary anthropogenic drivers of groundwater quality 
deterioration, while PCA identifies both geogenic 
(fluoride from mineral dissolution) and anthropogenic 
(nitrate from agricultural runoff) contamination 
sources. The DRASTIC model, when integrated with 
remote sensing-derived datasets and field-based 
hydrochemical data within a GIS environment, 
provides an effective decision-support tool for 
delineating groundwater vulnerability zones and 
prioritizing contamination remediation strategies. The 
study recommends the establishment of continuous 
groundwater quality monitoring networks integrated 
with satellite-based observation systems, 
implementation of managed aquifer recharge in high 
vulnerability zones, and adoption of precision 
agriculture practices to reduce agrochemical 
contamination of aquifer systems. 
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