ISSN 2277-2685
IJESR/Jan-Mar. 2026/ Vol-16/Issue-1/59-65

Kundarapu Dikshitha et. al., /International Journal of Engineering & Science Research

Full Length Article

Anomaly Detection For Industrial Application: Spotlight On
Patchcore And Autoencoder Insights With Resnet Backbone

Kundarapu Dikshitha!, Mr M.Syam Babu?
B.Tech Student, Department Of Electronics and Computer Engineering, J.B Institute of Engineering and
Technology, Hyderabad, India!
Assistant Professor Of Electronics and Computer Engineering, J.B Institute of Engineering and Technology,
Hyderabad, India?
kundarapudikshitha29@gmail.com , syam.ecm@jbiet.edu.in

Article Received 21-12-2025, Revised 13-01-2026, Accepted 22-01-2026
Authors Retains the Copyrights of This Article

ABSTRACT

Ensuring product quality is one of the key requirements in industrial manufacturing, where early detection of
defects helps in reducing losses, improving safety, and maintaining customer satisfaction. Manual inspection is
often time-consuming and prone to human error, which has motivated the use of Artificial Intelligence (A1) for
automated anomaly detection. This project focuses on developing a basic yet effective anomaly detection system
using image data. Two simple deep learning approaches are employed: an Autoencoder and a Patch-based
analysis method.

This project focuses on building a simple anomaly detection system for industrial applications. The goal is to
identify whether a product image is normal or defective. To achieve this, we use a basic Convolutional Neural
Network (CNN) for feature extraction and apply two easy approaches.

A small dataset of normal and defective product images is used for testing. The project demonstrates that even
with basic deep learning techniques, it is possible to detect defects in industrial images with good accuracy. This

highlights the usefulness of Al in improving product quality and reducing manual inspection effort.

Keyword: CNN, Al

Introduction

Anomaly detection is critical in various industrial
applications such as manufacturing, where
identifying defects or abnormal behavior ensures
product quality and operational safety. It is
important for early identification of equipment
malfunctions or production issues, reducing
downtime and preventing costly breakdowns. This
project focused on understanding and implementing
two state-of-the-art models for anomaly detection:
the PatchCore model, which has been recognized for
its unsupervised approach and high accuracy, and
the Autoencoder model, known for its simplicity and
effectiveness as a supervised method. The use of
ResNet as a backbone in both models was pivotal for
feature extraction, contributing to their robustness.
This report outlines the theoretical background,
implementation, and observed results of both
methods. Two promising approaches in this domain
are PatchCore and Deep Feature Reconstruction
(DFR). PatchCore leverages supervised learning
with patch-level feature embeddings, achieving
state-of-the-art results by combining a memory-
efficient coreset subsampling strategy with pre-
trained convolutional neural networks (CNNs).

On the other hand, DFR addresses unsupervised
anomaly detection and segmentation by
reconstructing dense, multi-scale regional features
generated frompre-trained CNNSs.

These methods have contributed significantly to
advancing anomaly detection, offering
complementary strengths for different application
scenarios and driving innovation in industrial and
real-world anomaly detection systems. By
examining both methods, this project highlights the
trade-offs between interpretability, computational
complexity, and detection accuracy, addressing the
practical concerns of deploying anomaly detection
systems at scale.

Existing System

ODFR: Deep Feature Reconstruction for
Unsupervised Anomaly Segmentation

The ODFR framework was introduced by Yang, Shi,
and Qi (2024), with an emphasis on pixel-level
unsupervised anomaly segmentation. The main
driving force behind ODFR is the difficulty of
accurately reconstructing anomalies compared to the
faithful reconstruction of normal regions. Utilizing

59

this idea, ODFR analyzes reconstruction faults in
feature space to discover anomalies.

ODFR employs a two-stage pipeline in its
methodology. Initially, a deep convolutional neural
network pretrained on extensive datasets like
ImageNet is used to extract features from input
images. Second, an autoencoder-like network that
has only been trained on typical data is used to
recreate these features. Higher reconstruction errors
during inference are produced by anomaly-
corresponding regions, and these can be mapped
back down to the pixel level to create segmentation
maps.

ODFR makes important contributions: it avoids the
blurriness of classical reconstruction, enhances
anomaly localization by working on feature space
instead of raw pixels, and generalizes well across
datasets. But it has drawbacks as well. Its back-
projection procedure can be computationally
demanding, and it mostly relies on pretrained feature
extractors, which might not match domain-specific
distributions. Furthermore, it is possible that
segmentation boundaries in intricate industrial
textures are not always accurate.

Towards Total Recall in Industrial Anomaly
Detection

With their 'Towards Total Recall' framework, Roth,
Pemula, Zepeda, Scholkopf, Brox, and Gehler
(2025) made significant progress in the field of
industrial anomaly detection. This work formulates
anomaly detection as a retrieval job in feature space,
which is different from reconstruction-based
approaches. It assesses how well new samples fit
stored embeddings of normal data rather than
rebuilding features..
The pipeline uses a pretrained backbone, like
ResNet, to extract embeddings for every local image
patch. A memory bank contains these embeddings of
typical patches. The nearest-neighbor search is used
to compare the embeddings from query patches
during inference. While small distances validate
normalcy, large distances reveal anomalies.
On the MVTec Anomaly Detection dataset, the
framework demonstrated state-of-the-art
performance and robustness across several industrial
categories. Its patch-level methodology provides a
balance between localized detection accuracy and
global image context. Its benefits include
interpretability, high accuracy, and conceptual
simplicity. Limitations include the following:
nearest-neighbor search scales poorly with large
datasets, storing huge embedding banks can be
memory-intensive, and extension beyond industrial
datasets (e.g., medical imaging) is dubious.

Proposed System And Methodology

Functional Requirements

Functional requirements define what the system
must do. They describe the functions, tasks, or

ISSN 2277-2685
IJESR/Jan-Mar. 2026/ Vol-16/Issue-1/59-65

Kundarapu Dikshitha et. al., /International Journal of Engineering & Science Research

activities that the system is expected to perform and
are essential for the system to achieve its purpose.
They specify the features and behaviors that the end-
user will see and interact with.

Key Categories and Examples

Functional requirements are often grouped into
logical categories, depending on the nature of the
system.

1. User Interaction and Interface

These requirements govern how users interact with
the system.

e User Authentication: The system must
allow users to log in with a unique
username and password.

e Data Input: The system must provide a
form for users to enter new product details,
including name, description, price, and
stock quantity.

e Search/Filter: The system must allow users
to search for products by name and filter
results by price range.

e Report Generation: The system must
generate a downloadable PDF report
summarizing monthly sales data.

2. Data Handling and Management
These requirements relate to the storage, retrieval,
and manipulation of data.

e Data Storage: The system must persistently
store all user profile information in a secure
database.

e Data Retrieval: The system must be able to
retrieve a customer's complete order
history within 2 seconds.

e Data Modification: The system must allow
an administrator to update the status of an
order (e.g., from "Processing" to
"Shipped").

e Transaction Integrity: The system must
ensure that a stock level update and a sales
record insertion are treated as a single,
atomic database transaction.

3. Security and Permissions
These requirements define the access control and
security features within the system.

e Role-Based Access: Only users with the
"Administrator" role must be able to access
the user management module.

e Sensitive Data Masking: Credit card
numbers must be displayed with only the
last four digits visible to non-
administrative staff.

e Password Policy: User passwords must be
a minimum of 8§ characters and include at
least one uppercase letter, one lowercase
letter, and one number.

60

Kundarapu Dikshitha ez.

ISSN 2277-2685
IJESR/Jan-Mar. 2026/ Vol-16/Issue-1/59-65

al., /International Journal of Engineering & Science Research

Feature Functional Requirements Non-Functional Requirements
, What the system does (features, How well the system performs (quality
Defines . .
actions). attributes).
Focus User tasks and business processes. Const-ramts, performance, reliability, and
security.
The system must send an email The email notification must be sent within
Example . .
notification. 10 seconds.
. Tested via test cases to confirm a Tested via benchmarks to assess
Testing . :
function works. performance/quality.

Non-Functional Requirements

Non-functional requirements (NFRs) specify
criteria that define the quality attributes of a system.
They impose constraints on the design and
implementation, defining how well the system must
perform its functions.

NFRs are crucial because they determine the user
experience, operational success, and long-term
viability of the system. They are often quantified and
measurable.

Execution Qualities (Run-Time Attributes)

These attributes are observable during the system's

of the system.

operation.
INFR L.
Category Description Measurable Example
The responsiveness. throughput. and capacit The system shall load the user dashboard in under
Performance P ’ £iput, PACYN) seconds for 90% of all requests under a normal

load of 50 concurrent users.

without major architectural changes.

The ability of the system to handle increasing||The system shall maintain performance metrics
Scalability |[load (users, transactions, or data volume)|l(e.g., 2-second response time) when the user base

grows from 1,000 to 10,000 concurrent users.

The proportion of time the system is

The system shall have an uptime of 99.9% (less

unauthorized access and attacks.

Availability - . than 43 minutes of downtime per month),
operational and accessible. . .
excluding scheduled maintenance.
L The probability of the system running without The sys.te‘m shall operate w1t.h0ut critical failure
Reliability failure for a snecified period for a minimum of 2,000 continuous hours (Mean
P P ' Time Between Failures - MTBF).
. . All sensitive user data shall be stored and
Security The ability to protect data and functions from transmitted using AES-256 encryption and TLS

1.2 or higher.

Evolution Qualities (Development and Maintenance Attributes)
These attributes govern the system's maintainability and long-term adaptation.

NFR Category ||Descripti0n

”Measurable Example

The ease with which the system can

Maintainability be modified, corrected, or enhanced.

A critical bug shall be resolved and deployed to
production within 4 hours of its identification and
verification.

The ability of the software to run on
Portability different platforms (OS, hardware,
cloud).

The application's web interface shall function correctly’
on the latest two major versions of Chrome, Firefox, and
Edge browsers.

61

ISSN 2277-2685
IJESR/Jan-Mar. 2026/ Vol-16/Issue-1/59-65

Kundarapu Dikshitha et. al., /International Journal of Engineering & Science Research

|NFR Category ||Descripti0n ”Measurable Example

The deeree to which the svstem is 90% of first-time users shall be able to complete the
Usability & . 4 registration process without assistance in under 60
easy to learn and efficient to use.
seconds.
Testabilit The degree to which the system can||95% of the system's core business logic shall be covered
Y be effectively tested. by automated unit and integration tests.
Constraints ~ (Design and Implementation 1. Goal of System Design
Limitations) The primary goal is to model the solution visually

These are external factors or rules that restrict the
design space.

e Legal & Compliance: The system must
comply with the General Data Protection
Regulation (GDPR) regarding all EU
citizen data processing and storage.

e Technology Stack: The system must be
built using the Java Spring Boot framework
and a PostgreSQL database.

e Resource Constraints: The maximum
budget for cloud hosting and operations
shall not exceed $5,000 per month.

Non-functional requirements are often more
challenging to define and measure than functional
requirements, but they are critical for determining
overall system success and should be given equal
consideration in the design process.

SYSTEM DESIGN

and logically. This documentation serves as a guide
for developers, ensuring that all components are
integrated efficiently and the non-functional
requirements (like performance and security) are
met.

2. Key Components of System Design

As indicated in your table of contents, the design
chapter typically includes these essential technical
artifacts:

4.1 Entity-Relationship (ER) Diagrams

e Purpose: To visually represent the data
structure of the system.

e Details: It shows the primary data entities
(tables), the attributes (fields) within those
entities, and the relationships (how entities
are connected, e.g., one-to-many) that form
the basis of the database.

System Architecture
e Purpose: To define the high-level structure
of the system.

e Details: This diagram breaks the system

into its major components (e.g.,
presentation layer, application layer, data

62

layer) and shows how they interact with
each other and with external systems.

ISSN 2277-2685
IJESR/Jan-Mar. 2026/ Vol-16/Issue-1/59-65

Kundarapu Dikshitha et. al., /International Journal of Engineering & Science Research

Common architectures include Three-Tier,
Client-Server, or Microservices.

Data Warehouse Architecture

Internal
Legacy

Systems \
—
e,

—

Data
Warehouse

Special
Purpose
Data

e —
External

Data
Sources

Result And Discussion

1. Results Presentation

The Results section focuses on presenting factual,
objective data derived from system testing (Chapter
6). This is typically presented using tables, charts,
and graphs for clarity.

A. Functional Results

e Confirmation that all features defined in
3.1 Functional Requirements are working
correctly.

e Test Case Summary: A table showing the
total number of test cases executed, passed,
and failed for different modules (Unit,
Integration, Functional testing).

e Key Feature Validation: Specific evidence
(e.g., screenshots, output logs) confirming
the successful execution of critical
functions, especially those implementing
the core 3.7 Algorithm.

B. Performance (Non-Functional) Results

e Data demonstrating the system meets the
quality criteria set in 3.2 Non-Functional
Requirements.

e Response Time: Measurement of load
times or transaction speeds under various
conditions (e.g., "The average API
response time was $150\,ms$, which meets
the requirement of less than $200\,ms$").

-

=

Query System
/

Executive EIS Client
Information

System \ Q

EIS Client

Decision

Support

Lol \ @

DSS Client

e Scalability/Throughput: Results from
stress testing, showing the maximum
number of users or transactions the system
can handle before degradation.

e Accuracy (for ML/AI projects):
Presentation of key metrics like accuracy,
precision, recall, Fl-score, and confusion
matrices.

2. Discussion and Analysis

The Discussion section is where you interpret the
results, compare them to existing work, explain
discrepancies, and justify the project's success.

A. Interpretation and Validation

e Analysis of Success: Explain why the
system performed well. Relate successful
outcomes directly back to the architectural
choices (4.2 System Architecture) and the
efficiency of the chosen Algorithm (3.7).

e Analysis of Failures/Limitations: Discuss
any failed test cases or instances where
non-functional requirements were not fully
met. Provide a deep analysis of the root
cause (e.g., a database bottleneck,
inefficient algorithm implementation, or
limited training data).

B. Comparison with Literature

e Benchmarking: Compare your system's

performance metrics (e.g., accuracy, speed)

63

with those of similar systems or research
presented in the literature review (usually
Chapter 2). This establishes the novel
contribution of your work.

C. Contribution to the Domain

e C(learly articulate the significance of the
results, especially regarding the 3.6
Deliverables and Beneficiaries. How does
the implemented system advance the field
or solve the problem initially stated?

D. Lessons Learned

e Reflect on the 3.8 Methodology used (e.g.,
Agile or Waterfall). Discuss what worked
well and what challenges were encountered
during the development and testing phases

CONCLUSION AND FUTURE
SCOPE
Conclusion
The Conclusion provides a concise summary of the
project's journey and its achievements, directly
relating the outcomes back to the initial goals.

e Restatement of the Problem and Goal:
Briefly reiterate the problem the system
was designed to solve and the main
objective stated in the introductory
chapters.

e Summary of Methodology and Solution:
Briefly mention the core approach used
(e.g., the 3.8 Methodology, the key design
choices in Chapter 4, and the 3.7 Algorithm
implemented).

e Summary of Key Results (Chapter 7): State
the main findings from your testing and
evaluation, emphasizing the system's
success.

o Confirm that the system meets its
3.1 Functional Requirements.

o Highlight the successful
achievement of critical 3.2 Non-
Functional Requirements (e.g.,
achieving the target accuracy,
processing speed, or reliability).

e Final Statement of Contribution: Explicitly
state the ultimate contribution of the project
to the domain or the target organization,
confirming the delivery of the promised 3.6
Deliverables.

Example Conclusion Sentence: "In conclusion, the
developed [System Name] successfully
demonstrated an accuracy of 92.5% in
classifying [Data Type], meeting the benchmark
requirement and proving the viability of the
[Algorithm Name] approach in a real-world setting."

Future Scope (Future Work)

The Future Scope section outlines potential
directions for expanding, improving, and further
validating the system beyond the current project's

ISSN 2277-2685
IJESR/Jan-Mar. 2026/ Vol-16/Issue-1/59-65

Kundarapu Dikshitha et. al., /International Journal of Engineering & Science Research

boundaries. It shows that the work is not a dead-end
but a foundation for future development.
A. Functional Enhancements
e Adding new features or capabilities that
were initially out of scope due to time or
resource constraints.
o Example: Integrating a new
payment gateway, developing a
mobile application version, or
adding a reporting feature for
advanced analytics.
B. Non-Functional Improvements
e Targeting weaknesses identified during
testing (Chapter 6) or optimizing
successful components.
o Example: Scalability: Refactoring
the database layer to handle
$10\times$ the current user load.

o Example: Performance:
Implementing a more efficient
algorithm or hardware

acceleration to reduce the
response time by an additional
$50\,ms$.

o Example: Security: Integrating
multi-factor authentication (MFA)
or undergoing a formal security
audit.

C. Data and Algorithm Refinements
e Suggestions for improving the core
algorithm or the data used.

o Example: Expanding the 3.5
Dataset Collection Process to
include a more diverse set of data
for improved generalization.

o Example: Exploring a more
sophisticated machine learning
model (e.g., transitioning from a
simple CNN to a Transformer
architecture) to boost prediction
accuracy.

D. Deployment and Transfer
e Proposing steps for wider adoption or
knowledge transfer.

o Example: Implementing a full
CI/CD (Continuous
Integration/Continuous
Deployment) pipeline for
automated deployment.

The Conclusion and Future Scope provides closure
to the report while opening the door for subsequent
research and development based on your findings.

REFERENCES
[1] Jie Yang, Yong Shi, ZhiQuan Qi, “ODFR: Deep

Feature Reconstruction for Unsupervised Anomaly
Segmentation,”, 13 Dec 2024.

64

[2] Karsten Roth, Latha Pemula, Joaquin Zepeda,
Bernhard Sch’olkopf, Thomas Brox, Peter Gehler,
“Towards Total Recall in Industrial Anomaly
Detection,” 15 Jun 2025 .

ISSN 2277-2685
IJESR/Jan-Mar. 2026/ Vol-16/Issue-1/59-65

Kundarapu Dikshitha et. al., /International Journal of Engineering & Science Research

65

