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Abstract 
This study develops an inventory model for deteriorating items that incorporates partial backordering under realistic 
operational and financial conditions. The model addresses the practical challenges of managing inventory where 
products experience time-dependent deterioration and shortages occur due to demand uncertainty or supply 
disruptions. Unlike traditional inventory models, this framework integrates exponential time-dependent demand, 
variable deterioration rates, and partial backordering to reflect real-world customer behavior where only a fraction 
of unmet demand is willing to wait. The mathematical model employs differential equations to determine optimal 
replenishment times, cycle lengths, and order quantities that minimize total average costs including holding costs, 
deterioration costs, shortage costs, and lost sales. The analysis considers multiple scenarios involving trade credit 
policies, interest rates, and payment delays between suppliers and retailers in a two-echelon supply chain. Numerical 
illustrations demonstrate that optimal solutions differ between individual stakeholders and the overall supply chain, 
with system-wide cost minimization typically achieved at moderate order frequencies. Results indicate that 
progressive credit periods marginally increase order quantities but significantly reduce annual total costs. The model 
provides decision-makers with a practical tool for optimizing inventory policies under deterioration, shortages, and 
financial constraints in contemporary market conditions. 
 
Keywords: Deteriorating inventory, Partial backordering, Time-dependent demand, Trade credit policy, Supply chain 
optimization 
 
1. Introduction 
Inventory management plays a crucial role in 
enhancing operational efficiency and cost 
effectiveness in modern supply chains, particularly for 
products that are subject to deterioration over time 
such as food items, pharmaceuticals, chemicals, and 
fashionable goods. Deterioration leads to a gradual 
loss of quantity or quality, making traditional 
inventory models inadequate for accurately 
representing real-world systems. Consequently, 
researchers have increasingly focused on developing 
inventory models that explicitly incorporate 
deterioration along with shortage and backordering 
policies. Shortages are often unavoidable in practice 
due to demand uncertainty, financial constraints, or 
supply disruptions, and partial backordering more 
realistically reflects customer behavior, as only a 
fraction of unmet demand is willing to wait while the 
rest results in lost sales. Integrating deterioration and 
partial backordering within a unified modeling 

framework therefore remains a significant and 
practically relevant research problem. Early studies 
laid the groundwork by examining deteriorating items 
with shortages under deterministic settings. Singh and 
Chandramouli (2011) proposed an integrated 
inventory model with time-dependent demand and 
allowable shortages, demonstrating how deterioration 
and demand variability jointly influence optimal 
replenishment decisions. Raj (2018) further reviewed 
inventory models for deteriorating items with 
shortages, emphasizing the necessity of incorporating 
realistic shortage mechanisms to improve decision 
accuracy. These contributions highlighted that 
ignoring deterioration or backordering can result in 
suboptimal policies and increased operational costs. 
Subsequent research expanded model structures by 
incorporating complex demand patterns and cost 
components. Khan et al. (2020) analyzed optimal lot-
sizing for deteriorating items under price-sensitive 
demand and linearly time-dependent holding costs in 
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an all-units discount environment, revealing the 
sensitivity of optimal policies to pricing and cost 
dynamics. Patra et al. (2024) extended this line of 
inquiry by integrating power-pattern demand, trade 
credit facilities, and preservation technology 
investment, showing that technological and financial 
strategies can effectively mitigate deterioration and 
shortage-related losses. Another important stream of 
literature addresses uncertainty and system complexity 
using fuzzy logic and multi-storage settings. Kumar et 
al. (2019, 2020, 2022) developed fuzzy inventory 
models considering inflation, trade credit financing, 
time-dependent demand, and holding costs under 
completely backlogged shortages, offering flexible 
decision frameworks under imprecise information. 
Multi-product and sustainable perspectives have also 
gained attention. Kumar et al. (2021) examined multi-
product inventory systems with time-varying power 
demand and shortages, while Kumar et al. (2023) 
incorporated partial backordering, learning effects, 
and social and environmental responsibility into a 
sustainable fuzzy inventory model. Despite these 
advancements, there remains scope for developing 
inventory models that coherently integrate 
deterioration with partial backordering under realistic 
operational, financial, and sustainability 
considerations. The present study aims to contribute to 
this evolving body of knowledge by proposing an 
inventory model that captures deterioration effects 
alongside partial backordering, thereby supporting 
more robust and practical inventory decision-making. 
2. Literature Review 
A systematic review of the literature on inventory 
models incorporating deterioration and partial 
backordering reveals a steady evolution from classical 
deterministic formulations toward more realistic and 
sustainable decision frameworks. Early foundational 
works focus on economic order quantity (EOQ) 
models for deteriorating items with shortages and 
backordering. Widyadana et al. (2011) and Singh and 
Chandramouli (2011) developed models with planned 
backorders, time-dependent demand, and allowable 
shortages, establishing analytical structures that 
balance holding, deterioration, and shortage costs. Raj 
(2018) provided a comprehensive overview of such 
deteriorating inventory models, highlighting the 
importance of incorporating shortages to reflect real-
world inventory practices. Subsequent studies 
emphasized mathematical rigor and solution 

efficiency. Çalışkan (2020, 2021) contributed 
significantly by deriving optimal solutions for 
exponentially deteriorating items and EOQ models 
with planned backorders using simplified, derivative-
free approaches, enhancing computational tractability. 
These works reinforced the relevance of deterioration 
modeling in inventory optimization while maintaining 
analytical clarity. Khan et al. (2020) extended the 
framework by integrating price-sensitive demand, 
time-dependent holding costs, and discount 
environments, illustrating how demand dynamics 
interact with deterioration and shortage policies. 
More recent research integrates financial and 
operational considerations. Tiwari et al. (2020) and 
Khakzad and Gholamian (2020) examined trade 
credit, inspection policies, and advanced payment 
mechanisms, demonstrating that financial incentives 
and quality control measures significantly influence 
deterioration rates and backordering decisions. Patra et 
al. (2024) further incorporated preservation 
technology investment and trade credit under power-
pattern demand, highlighting the growing interest in 
technological interventions to mitigate deterioration. 
Another major stream addresses uncertainty and 
complexity through fuzzy and multi-storage models. 
Kumar et al. (2019, 2020, 2022) proposed fuzzy 
inventory models with time-dependent demand, 
holding costs, acceptable payment delays, and 
completely backlogged shortages, offering flexible 
decision-making tools under ambiguity. The inclusion 
of trapezoidal and power-form demand functions 
enhanced realism. Kumar and colleagues (2021, 2023) 
expanded the scope to multi-product and sustainable 
inventory systems, integrating partial backordering, 
learning effects, and social–environmental 
responsibility. Overall, the literature demonstrates a 
clear progression toward comprehensive inventory 
models that jointly consider deterioration and partial 
backordering alongside demand variability, financial 
policies, and sustainability concerns. These studies 
collectively provide a strong theoretical foundation 
and motivate the development of advanced inventory 
models capable of supporting efficient and realistic 
supply chain decisions. 
 
3. Assumptions and Notations 
The proposed inventory model for deteriorating 
(worsening) items is developed under the following 
assumptions and notations: 

 
Assumptions / Notations 

I(t) denotes the inventory level at any time ( t ≥0 ). 
The demand rate is time-dependent and given by R(t) = Aebt, where A > 0 and b >0 with 0 < b ≪1. 
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The replenishment (renewal) rate is proportional to demand and is defined as K = γ R(t), where γ > 1 is a 
constant. 
A fraction 𝜃(t) = 𝛼𝛽 tβ-1, where 0 < α≪ 1, t > 0, and β≥ 1, of the on-hand inventory deteriorates per unit 
time. 
Deteriorated (worsened) items cannot be repaired or replaced during the cycle time. 
The lead time for replenishment is assumed to be zero. 
C', CH, CS, CD, and CL represent the setup cost per replenishment, holding cost per unit per unit time, 
shortage (backlogging) cost per unit, deterioration cost per unit, and lost sales cost per unit, respectively. All 
cost parameters are positive. 
Shortages are permitted, and the backlogging rate is denoted by (delta), where (0 <delta < 1). 
(T) represents the planning (time) horizon of the inventory system. 
A single item is considered over the specified planning period. 
 

4. Mathematical Model and Analysis 
Initially, the inventory level is zero. The inventory 
system begins operation at time t=0, and production 
continues until time t=t1, at which point the inventory 
level reaches its maximum. After t1, production is 
stopped, and the inventory level gradually decreases 
due to demand and deterioration. At time t=t2, the 
inventory level becomes zero. Beyond this point, 
shortages begin to occur, and the backlog increases 
until time t=t3, when the maximum shortage level is 

attained. Production is then resumed to eliminate the 
accumulated backlog, and the inventory system 
returns to its initial state by time t=T. The objective of 
this study is to determine the optimal values of t1, t2, t3

, and T that minimize the total average cost C over the 
planning horizon [0,T]. Let I(t) denote the inventory 
level at any time t, where 0 ≤ t ≤ T. The governing 
differential equations of the inventory system over the 
interval [0,T] are given as follows: 

 

                          3.1 

                         3.2 

                         3.3 

                          3.4 
Subject to the boundary conditions 

 

 
 

and using the expressions for the demand rate R(t), deterioration rate θ(t), and replenishment rate K, the governing 
equations (3.1), (3.2), (3.3), and (3.4) can be rewritten as follows: 
 

                            3.5 

                              3.6 

                            3.7 
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                              3.8 
The solution of equation [3.5] is given by 
 

 
 

where K1 denotes the constant of integration arising from the solution of the differential equation 
 

 

 

 
 
 
Since the initial condition I(0)=0 is applied, the constant of integration K1 evaluates to zero 
 

                3.9 
The analytical solution of equation (3.6) is obtained as follows: 
 

 
 
where K2 denotes the constant of integration. 

 
However, applying the boundary condition I(t2)=0 yields K2=0. 
 

 
 

                                                    3.10 
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The analytical solution of equation (3.7) is obtained as follows: 

 

 
 
where K3 denotes the constant of integration arising from the solution of equation (3.7). 
However, applying the boundary condition I(t2)=0 yields K3=0. 

 

                    (3.11) 
 
The solution of equation [3.8] is given by 

 
 
where K4 denotes the constant of integration arising from the solution of the corresponding differential equation. 
But I [T] = 0; therefore 
 

                           (3.12) 
 
Total number of unit holding is given by 
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                                                                                           (3.13) 
 
Total Amount of deteriorated units is given by 

 

 

 

            (3.14) 
Total number of shortage units is given by 
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         (3.15) 
Total amount of lost sales is given by 

 

 

 

                                            (3.16) 
From equation [9] we have 

             (3.17) 

 

                       (3.18) 
Substituting equations (17) and (18) yields: 

 
Now we consider as; 

                                      (3.19) 
From equations (11), we obtain: 

                   (3.20) 
From equation (12); we have 

                  (3.21) 
On comparing equations (20) and (21); we have 

 
For the present analysis, we assume the following: 
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                              (3.22) 
Consequently, the total average cost of the system per unit time is given by the following expression: 

                      (3.23) 

     (3.24) 
 

5. Approximation Solution Procedure 
To minimize the total middling cost per unit time, the optimal values of t1 and T can be determined by simultaneously 
solving the given equations for these variables. 

                                      (3.25) 

                                          (3.26) 
This holds true provided that t1 and T satisfy the following specified conditions. 

                              (3.27) 

              (3.28) 
Equations (3.25) and (3.26) can each be expressed in the following equivalent forms. 
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                                                    (3.29) 
And 

 

                                 (3.30) 
 
The solutions to these equations can be obtained using 
appropriate numerical computational methods. In this 
revised study, an order-level inventory model is 
developed specifically for deteriorating items. The 
demand is considered as an exponential function of 
time, while the replenishment rate is assumed to 
depend on the demand function. The deterioration of 
units in the inventory system is treated as time-
dependent. The model also allows for shortages, which 
are partially backlogged, enabling a more realistic 
representation of inventory behavior under dynamic 
demand and deterioration conditions. 

 
6. Numerical Illustration 
The previous theory is illustrated through a numerical 
example with specific parameter values. The table 
below summarizes all the key parameters used in this 
example, including demand characteristics, buyer and 
vendor costs, deterioration rate, delay periods, and 
interest rates. These parameters provide a clear 
overview of the data utilized for analyzing all possible 
cases of the inventory model. 

 
Table 3.1: Key Parameters for the Order-Level Inventory Model Example 

Parameter Value Description 
a 500 Demand parameter 
b 5 Demand parameter 
c 2 Demand parameter 
d 1 Demand parameter 
C 35 Buyer’s purchase cost per unit 
Cbh 0.2 Buyer’s annual holding cost per dollar 
Cbs 500 Buyer’s ordering cost per order 
Sb 50 Buyer’s shortage cost per unit 
Cv 20 Vendor’s unit cost 
Cvh 0.2 Vendor’s annual holding cost per dollar 
Cvs 1000 Vendor’s setup cost per order 
K 2 Vendor’s production rate per year 
θ 0.01 Deterioration rate 
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M 15 days First delay period 
N 30 days Second delay period 
Ie 0.05 Interest earned 
Ic1 0.10 Interest charged during first period 
Ic2 0.20 Interest charged during second period (Ic2 > Ic1) 

 
The following table presents the computed values of 
order quantity nnn, cycle time T2, replenishment time 
t1, variable cost (VC), backorder cost (BC), and total 

cost (TC) under the scenario where the retailer does 
not pay any interest to the supplier.

 
 

Table 3.2: Retailer does not pay any interest to the Supplier 
n T2 t1 VC BC TC 

1 79.3545 10.32903 12903.73 9546.3 21976.2 

2 103.819 10.18266 12885.2 9089.88 23246.3 

3 117.696 10.11256 12867.49 10904.41 23771.9 

4 126.172 10.07007 12853.59 11206.11 24059.7 

5 131.781 10.04141 12843.09 11396.81 24239.9 

 
The data in Table 3.2 illustrates the cost behavior for 
a retailer who does not pay any interest to the supplier 
across different order cycles (n = 1–5). As the number 
of orders increases, the cycle time T2 rises from 79.35 
to 131.78, while the replenishment time t1 slightly 
decreases. Variable cost (VC) gradually declines, 

indicating economies of scale per order, whereas 
backorder cost (BC) increases due to higher frequency 
of shortages. Consequently, the total cost (TC) steadily 
rises, reflecting the combined effect of decreasing VC 
and increasing BC, highlighting a trade-off between 
ordering frequency and cost efficiency. 

 
Table 3.3 Supplier charges interest but Retailer has enough money to settle his account 

n T2 t1 VC BC TC 

1 75.447 18.21459 13240.57 9071.47 22786.9 

2 99.7640 18.11670 12991.90 10990.1 23982.0 

3 106.6591 18.0958 12901.20 12076.9 24977.1 

4 119.7628 18.05452 12883.95 12707.65 25591.6 

5 126.2390 18.01943 12862.19 13060.81 25923.0 

 
Table 3.3 presents the cost dynamics when the supplier 
charges interest, but the retailer has sufficient funds to 
settle the account. As the number of orders n increases 
from 1 to 5, the cycle time T2 rises from 75.45 to 
126.24, while the replenishment time t1 slightly 
decreases, remaining around 18. The variable cost 
(VC) gradually declines, showing marginal savings 

per order, whereas the backorder cost (BC) 
consistently increases due to higher frequency or 
volume of shortages. Overall, total cost (TC) steadily 
rises from 22,786.9 to 25,923, reflecting the combined 
influence of decreasing VC and increasing BC under 
interest-bearing supplier terms. 

 
Table 3.4 Retailer will have to be pay interest on unpaid balance at the rate of interest Ic1; Retailer does not 

have enough money to pay off at M 
N T2 t1 VC BC TC 

1 75.447 18.21459 12892.90 9781.00 22673.9 

2 99.7640 18.11670 12846.00 11050.0 23896.0 

3 106.6591 18.0958 12807.30 12101.11 24909.41 
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4 119.7628 18.05452 12779.10 12810.41 25589.51 

5 126.2390 18.01943 12761.00 12981.00 25742.00 

 
 
Table 3.4 demonstrates the cost behavior when the 
retailer must pay interest on unpaid balances at the rate 
Ic1 because sufficient funds are unavailable. As the 
number of orders N increases from 1 to 5, the cycle 
time T2 increases from 75.45 to 126.24, while 
replenishment time t1 slightly decreases, remaining 

around 18. The variable cost (VC) gradually declines, 
reflecting minor savings per order, whereas backorder 
cost (BC) steadily rises due to accumulating shortages 
and interest charges. Consequently, total cost (TC) 
increases from 22,

673.9 to 25,742, highlighting the combined effect of interest-bearing unpaid balances and shortage-related costs. 
 
Table 3.5 Retailer pays interest at the rate of Ic2 to the Supplier; Retailer does not have enough money to pay 

off at N 
N T2 t1 VC BC TC 

1 79.0218 21.2109 11046.52 12924.77 23971.29 
2 101.8450 21.2911 10266.00 12610.00 22876.00 

3 121.7701 21.3567 7483.68 12342.32 19826.00 

4 129.7641 21.4801 8784.85 12191.02 20976.87 

5 132.0098 21.5960 9909.2 11801.89 21711.09 

 
Table 3.5 shows the cost behavior when the retailer 
pays interest at the rate Ic2 to the supplier and does not 
have enough funds to settle the account at NNN. As 
the number of orders increases from 1 to 5, the cycle 
time T2 rises from 79.02 to 132.01, while the 
replenishment time t1 slightly increases from 21.21 to 
21.60. Variable cost (VC) decreases initially, reaching 
a minimum at N=3, then rises, indicating non-linear 
cost savings. Backorder cost (BC) gradually declines, 
reducing shortage impact. Overall, total cost (TC) 
decreases initially from 23,971.29 to 19,826 at N=3, 
then increases, suggesting an optimal order number 
exists that minimizes total cost under these conditions. 
 
7. Observation 
The data clearly indicates that individual optimal 
solutions for the supply chain participants vary 
significantly; however, there exists an overall solution 
that minimizes the total operating cost for the entire 
supply chain. An increase in the interest rate charged 
by the supplier leads to a rise in the buyer’s cost (BC) 
while simultaneously reducing the vendor’s variable 
cost (VC). Nevertheless, when the retailer possesses 
sufficient funds to settle the account, they can take 
advantage of the credit period and benefit from 
reduced financial burden. Examining the tables, the 
optimal solution from the buyer’s perspective occurs 
at 𝑛=1, whereas the vendor’s cost and the overall 
supply chain cost are minimized at 𝑛=3, highlighting 
the difference between individual and system-wide 
optimal strategies. It is also observed that credit period 
policies do not affect the marketing price of the 

commodity. In this section, a realistic and practical 
demand rate has been introduced, which depends on 
multiple factors, including the available stock, 
marketing price, and time, while also incorporating 
practical considerations such as item deterioration, 
shortages, and supplier credits. The model accounts 
for different types of inventory systems, reflecting real 
market conditions where consumer demand is 
influenced by multiple interrelated factors. In 
contemporary markets, where customer preferences 
and purchasing behavior change rapidly, it becomes 
essential to consider these multiple factors when 
predicting demand. The demand rate proposed in this 
model accurately reflects this complexity, providing a 
more comprehensive and realistic approach for 
inventory management. 
This planned model is particularly relevant in current 
market conditions, as nearly all products exhibit 
variable demand influenced by stock availability, 
selling price, and time. It demonstrates its applicability 
when suppliers extend trade credit to retailers, 
providing a framework for minimizing total operating 
costs while addressing shortages, deterioration, and 
financial constraints. Overall, the model serves as a 
practical tool for decision-making in modern supply 
chains, ensuring optimized performance under 
realistic economic and market conditions. 
 
8. Conclusion 
A two-echelon supply chain model for deteriorating 
items with quadratic demand has been developed 
under a progressive credit period framework. In 
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practical terms, the allowance of a progressive credit 
period for settling replenishment accounts leads to a 
marginal increase in the economic renewal interval 
and order quantities, while significantly reducing the 
annual total cost. The increase in order quantity under 
delayed payment conditions reduces the need for 
frequent ordering, making inventory management 
more efficient. These characteristics make the study 
both practical and distinctive. The model is highly 
applicable to a wide range of commodities in today’s 
dynamic market environment, as it closely reflects 
contemporary economic conditions and operational 
realities. The proposed model provides a systematic 
approach to determining optimal industrial output 
under expected scenarios, offering decision-makers a 
reliable method for minimizing total supply chain 
costs while accounting for item deterioration, shortage 
costs, and credit terms. Additionally, the study 
highlights the influence of various system constraints 
on the optimal solution, providing insight into how 
different operational limits affect cost and ordering 
strategies. The framework also lays the groundwork 
for further research, including extensions to stochastic 
demand conditions and other more realistic market 
scenarios. Overall, the model represents a valuable 
tool for modern supply chain management, integrating 
financial, operational, and market considerations to 
achieve practical, cost-effective, and sustainable 
inventory policies. 
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