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Abstract

This study develops an inventory model for deteriorating items that incorporates partial backordering under realistic
operational and financial conditions. The model addresses the practical challenges of managing inventory where
products experience time-dependent deterioration and shortages occur due to demand uncertainty or supply
disruptions. Unlike traditional inventory models, this framework integrates exponential time-dependent demand,
variable deterioration rates, and partial backordering to reflect real-world customer behavior where only a fraction
of unmet demand is willing to wait. The mathematical model employs differential equations to determine optimal
replenishment times, cycle lengths, and order quantities that minimize total average costs including holding costs,
deterioration costs, shortage costs, and lost sales. The analysis considers multiple scenarios involving trade credit
policies, interest rates, and payment delays between suppliers and retailers in a two-echelon supply chain. Numerical
illustrations demonstrate that optimal solutions differ between individual stakeholders and the overall supply chain,
with system-wide cost minimization typically achieved at moderate order frequencies. Results indicate that
progressive credit periods marginally increase order quantities but significantly reduce annual total costs. The model
provides decision-makers with a practical tool for optimizing inventory policies under deterioration, shortages, and
financial constraints in contemporary market conditions.

Keywords: Deteriorating inventory, Partial backordering, Time-dependent demand, Trade credit policy, Supply chain
optimization

1. Introduction framework therefore remains a significant and

Inventory management plays a crucial role in
enhancing  operational  efficiency and  cost
effectiveness in modern supply chains, particularly for
products that are subject to deterioration over time
such as food items, pharmaceuticals, chemicals, and
fashionable goods. Deterioration leads to a gradual
loss of quantity or quality, making traditional
inventory models inadequate for accurately
representing real-world systems. Consequently,
researchers have increasingly focused on developing
inventory models that explicitly incorporate
deterioration along with shortage and backordering
policies. Shortages are often unavoidable in practice
due to demand uncertainty, financial constraints, or
supply disruptions, and partial backordering more
realistically reflects customer behavior, as only a
fraction of unmet demand is willing to wait while the
rest results in lost sales. Integrating deterioration and
partial backordering within a unified modeling

practically relevant research problem. Early studies
laid the groundwork by examining deteriorating items
with shortages under deterministic settings. Singh and
Chandramouli  (2011) proposed an integrated
inventory model with time-dependent demand and
allowable shortages, demonstrating how deterioration
and demand variability jointly influence optimal
replenishment decisions. Raj (2018) further reviewed
inventory models for deteriorating items with
shortages, emphasizing the necessity of incorporating
realistic shortage mechanisms to improve decision
accuracy. These contributions highlighted that
ignoring deterioration or backordering can result in
suboptimal policies and increased operational costs.

Subsequent research expanded model structures by
incorporating complex demand patterns and cost
components. Khan et al. (2020) analyzed optimal lot-
sizing for deteriorating items under price-sensitive
demand and linearly time-dependent holding costs in
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an all-units discount environment, revealing the
sensitivity of optimal policies to pricing and cost
dynamics. Patra et al. (2024) extended this line of
inquiry by integrating power-pattern demand, trade
credit facilities, and preservation technology
investment, showing that technological and financial
strategies can effectively mitigate deterioration and
shortage-related losses. Another important stream of
literature addresses uncertainty and system complexity
using fuzzy logic and multi-storage settings. Kumar et
al. (2019, 2020, 2022) developed fuzzy inventory
models considering inflation, trade credit financing,
time-dependent demand, and holding costs under
completely backlogged shortages, offering flexible
decision frameworks under imprecise information.
Multi-product and sustainable perspectives have also
gained attention. Kumar et al. (2021) examined multi-
product inventory systems with time-varying power
demand and shortages, while Kumar et al. (2023)
incorporated partial backordering, learning effects,
and social and environmental responsibility into a
sustainable fuzzy inventory model. Despite these
advancements, there remains scope for developing
inventory models that coherently integrate
deterioration with partial backordering under realistic
operational, financial, and sustainability
considerations. The present study aims to contribute to
this evolving body of knowledge by proposing an
inventory model that captures deterioration effects
alongside partial backordering, thereby supporting
more robust and practical inventory decision-making.
2. Literature Review

A systematic review of the literature on inventory
models incorporating deterioration and partial
backordering reveals a steady evolution from classical
deterministic formulations toward more realistic and
sustainable decision frameworks. Early foundational
works focus on economic order quantity (EOQ)
models for deteriorating items with shortages and
backordering. Widyadana et al. (2011) and Singh and
Chandramouli (2011) developed models with planned
backorders, time-dependent demand, and allowable
shortages, establishing analytical structures that
balance holding, deterioration, and shortage costs. Raj
(2018) provided a comprehensive overview of such
deteriorating inventory models, highlighting the
importance of incorporating shortages to reflect real-
world inventory practices. Subsequent studies
emphasized mathematical rigor and solution
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efficiency. Caligkan (2020, 2021) contributed
significantly by deriving optimal solutions for
exponentially deteriorating items and EOQ models
with planned backorders using simplified, derivative-
free approaches, enhancing computational tractability.
These works reinforced the relevance of deterioration
modeling in inventory optimization while maintaining
analytical clarity. Khan et al. (2020) extended the
framework by integrating price-sensitive demand,
time-dependent  holding costs, and discount
environments, illustrating how demand dynamics
interact with deterioration and shortage policies.
More recent research integrates financial and
operational considerations. Tiwari et al. (2020) and
Khakzad and Gholamian (2020) examined trade
credit, inspection policies, and advanced payment
mechanisms, demonstrating that financial incentives
and quality control measures significantly influence
deterioration rates and backordering decisions. Patra et
al. (2024) further incorporated preservation
technology investment and trade credit under power-
pattern demand, highlighting the growing interest in
technological interventions to mitigate deterioration.
Another major stream addresses uncertainty and
complexity through fuzzy and multi-storage models.
Kumar et al. (2019, 2020, 2022) proposed fuzzy
inventory models with time-dependent demand,
holding costs, acceptable payment delays, and
completely backlogged shortages, offering flexible
decision-making tools under ambiguity. The inclusion
of trapezoidal and power-form demand functions
enhanced realism. Kumar and colleagues (2021, 2023)
expanded the scope to multi-product and sustainable
inventory systems, integrating partial backordering,
learning effects, and social-environmental
responsibility. Overall, the literature demonstrates a
clear progression toward comprehensive inventory
models that jointly consider deterioration and partial
backordering alongside demand variability, financial
policies, and sustainability concerns. These studies
collectively provide a strong theoretical foundation
and motivate the development of advanced inventory
models capable of supporting efficient and realistic
supply chain decisions.

3. Assumptions and Notations

The proposed inventory model for deteriorating
(worsening) items is developed under the following
assumptions and notations:

Assumptions / Notations

I(t) denotes the inventory level at any time ( t >0 ).

The demand rate is time-dependent and given by R(t) = Ae®, where A > 0 and b >0 with 0 <b «1.
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constant.

The replenishment (renewal) rate is proportional to demand and is defined as K =y R(t), where y > 1 is a

time.

A fraction 8(t) = af t*!, where 0 <0« 1, t> 0, and B= 1, of the on-hand inventory deteriorates per unit

Deteriorated (worsened) items cannot be repaired or replaced during the cycle time.

The lead time for replenishment is assumed to be zero.

cost parameters are positive.

C', Cu, Cs, Cp, and Cy. represent the setup cost per replenishment, holding cost per unit per unit time,
shortage (backlogging) cost per unit, deterioration cost per unit, and lost sales cost per unit, respectively. All

Shortages are permitted, and the backlogging rate is denoted by (delta), where (0 <delta < 1).

(T) represents the planning (time) horizon of the inventory system.

A single item is considered over the specified planning period.

4. Mathematical Model and Analysis

Initially, the inventory level is zero. The inventory
system begins operation at time t=0, and production
continues until time t=t;, at which point the inventory
level reaches its maximum. After t;, production is
stopped, and the inventory level gradually decreases
due to demand and deterioration. At time t=t,, the
inventory level becomes zero. Beyond this point,
shortages begin to occur, and the backlog increases
until time t=t3, when the maximum shortage level is

w-.» 0(t)I(t) = K ~=R(t),
dt

m+0(l)l(t) =-R(t),
dt

dI(t) -5

- OR (t),

Eiﬂg: K -8R (1),

Subject to the boundary conditions

attained. Production is then resumed to eliminate the
accumulated backlog, and the inventory system
returns to its initial state by time t=T. The objective of
this study is to determine the optimal values of ti, t2, t3
, and T that minimize the total average cost C over the
planning horizon [0,T]. Let I(t) denote the inventory
level at any time t, where 0 < t < T. The governing
differential equations of the inventory system over the
interval [0,T] are given as follows:

0<t=y

3.1
LELL L

32
LSty

33
t35t<T

34

1(0) = I(t,) = I(T) = 0,

and using the expressions for the demand rate R(t), deterioration rate 0(t), and replenishment rate K, the governing
equations (3.1), (3.2), (3.3), and (3.4) can be rewritten as follows:

dI(y) | aft*I(t) = -Ae™;
dt

dI(t) _ ~5Ae™
dt

? +aBtI() = (y—1)Ae™;

0<t<y

35
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ESR

—d;(t" = (y-8)Ae"; ta<t<T

3.8
The solution of equation [3.5] is given by

a g [ h
10" =Ay-1)[e"e"dt+K,
where K denotes the constant of integration arising from the solution of the differential equation

10" =Aly-)[@+bt+at” +bat*)dt+K,

. 2 el 2 ,
1) =Ke™ +A(y-1)| 1+ 2L 4 & DA oo
2 pB+1 pP+2
b_lz_ (IBIB'I - b(lBllhz
2 B+1 2(B+2)

I(t) =K, (1-at”) +A{'{—l)[l +

Since the initial condition I(0)=0 is applied, the constant of integration K; evaluates to zero

bt? - apt” - bapt"?
2 B+l 2(B+2)

The analytical solution of equation (3.6) is obtained as follows:

I(t)=A@y-D|t+ ;0<t<ty

3.9

1) =-Afee"dt+K,

where K> denotes the constant of integration.

I(t) =K,e ™ —A[H

bt? . at™! N bat"? oa
2 B+l B+2
However, applying the boundary condition I(t2)=0 yields K>=0.

2 B+l f+2
K alq, o D, ot ba,
2 B+l B+2

2 B+l P+2

2 P+l p+2 ' 2 fi+1 p+2 -
I(l) =A [2 + % + (1'.2 + balz e—ul' -Alt bt ol & bat c—ut
2 B+1 B+2

aft”'  bapt’? o batit’ at)’ b(xlg'z]

b 2‘_2
I(t)_A{“”l)*?(” D ey o) M T2 Ve pae
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The analytical solution of equation (3.7) is obtained as follows:

bt

I(1) = —5A%+K3

where K3 denotes the constant of integration arising from the solution of equation (3.7).
However, applying the boundary condition I(t2)=0 yields K3=0.

K:‘ :ﬂch‘#

I(t):—SA[e"” ~e“]: LSt<t;
b
(3.11)

The solution of equation [3.8] is given by

« Al
Iu)=(~r—b)%+l<,

where K4 denotes the constant of integration arising from the solution of the corresponding differential equation.
But I [T] = 0; therefore

I(t)=M[e"' -], <t<T
b (3.12)

Total number of unit holding is given by
i

I, = fl(:)dt + j I(t)dt

0 P

=A(Y—l)[ﬁ+b_l3_ apt b ]lm[tz:—ﬁ
2 6 (B+DPE+2) 2B+2P+3) | 2
b 12|—£]+ apt"? y baft™  at,t"  batjt™
2l 3) B+DP+2 2B+2P+3) P+1  2(B+))
at’'t bat‘;'zt]"

+ +

B+l p+2 |
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2 3 pe2 pe3 2 3
I,‘=A[(y—l){l—‘+ﬁ— aphy - }+l§—t—2+b[t§—t—z\]

2 6 B+)PE+2) 2B+2)B+3) 2 2\* 3
" apth? " bapt;” aty”  baty” +at§""+bat§"_“
B+)B+2) 2B+2)B+3) P+1 2B+1) P+l p+2
LU ob(e 4 oBy™  bafy”  att™  batt”
2 20" 3) B+DB+2) 2B+2)B+3) P+l 2B+))

Calt, bm‘;”tl]

B+1  (B+2)
Iy = A[T {L’z_ + Pﬁ = C(Bl':'z - baBtl:d }+ -l-;- + Pl:- + _______(1[3!2'2
2 6 @E+)PB+2) 2B+2PB+3)| 2 3 @+)E+2)
, bapt” £ - bizt, , at,ti”  batit” at™t,
PB+D(PE+3) 2 B+1  2(B+1) P+1
bt}
B+2

(3.13)

Total Amount of deteriorated units is given by
1 i

Ip= je[t)l(t)dt + IB(t)I{l)dt

0 %

F bt b b
I.=A = P s [t | (AP tF e 2P __lud dt
’ aB[w )j[ = ] j( St =5t }

[ ([ (B pez \N (- 2,8 pe2 \
T oy (L bt +(t2t L J
\B+1 2(B+2) ), B p+1 28 2(PB+2)

e

{ P+l pe2 ) B+l Bl pe2 2
( bt t t bt bt
=Aaf| (y-1)| —+— -2 ___2

\B+1 2(B+2)) P P+1 2B 2(B+2)
Lt bddd e }
. - &
B p+1 2B 2(B+2)
L = Aap T[ (P . bt ]+ (i 5 bt!? _lztﬁ‘_btit{’]
B+1 2(B+2)) BB+ PE+2) P 2B

Total number of shortage units is given by

(3.14)
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= _T I(t)dt - j I(t)dt

=_[]@ _e.,‘]dﬁj@(eu_ew)d,]

Iy b iy
6A ehl, _eu_' A( _'_5) eb’r _.elll
Isz—[T{(ts—lZ)e‘“*+ = }+ Yb = +(ty = T)e"
(3.15)
Total amount of lost sales is given by
1y T
I, = [ A-9R@dt+ [ 1-FR(Vdt
5 3 3
= [a-9R@mat
:
= [a-8)Ae"at
_0-8Arw
I, = e —-e
- b [ ] (3.16)
From equation [9] we have
2 B+ f+2
1) =A(7_l)[‘l+%maﬁnl *guth ]
P+ B+2) .17

B+t pe2
Bt Do, ~at,t!
B+1  2(B+2)
_ bat;t} ; ath” ” bat,
2 B+1 P+2
Substituting equations (17) and (18) yields:
2 B+l pe2 2 2, B+l p+2
ol &+ bty aft;”  baPt ¢, + bty —at,t" - bat;t] Lo bat;
2 B+1 2(B+2) 2 2 B+1 P+2

Now we consider as;

I(t,) =A[(lz ~1,) +%(l: -t}) +

(3.18)

t, =f(t,) (3.19)

From equations (11), we obtain:

0A
I(t,) = —[e"‘* -e™ ]
b (3.20)
From equation (12); we have

A("{‘ O w bT
I(t,) = e’ —e
b [ ] (3.21)

On comparing equations (20) and (21); we have
ye™ =8e™ + (y—38)e"”

For the present analysis, we assume the following:

34



ISSN 2277-2685
E SR IJESR/Jan-Mar. 2026/ Vol-16/Issue-1/28-40

Ms. Shifa et. al., /International Journal of Engineering & Science Research

ty =g(T.t,) (3.22)

Consequently, the total average cost of the system per unit time is given by the following expression:

1 R
C=—|C'+C,I.+C,I_ +C.I. +C,I |=—
T [ H*H D*D S°S L l.] T (323)

2 3 B2 pe2 2 3
Cz%[C'+C,lA{.,[t_l+ﬁ_ apt  bapy ]+lf(t.)l ue

2 6 B+DP+2) 2B+2)P+3) 2 3

L GBI @)1 | baBlf ()"
@+DE+2) B+B+3)

bt, [f(t,)]? i at] ' (t,) i bat) [ (t,)])
2 B+1 2(B+1)

-,f(t) -

at [F() bat fe)"?) . . [ (
- - +CprAaf
B+l B+2 1"

¢ bt ) F bIE()]P?
i P .
B+1 2B+2)) PB+D)  PB+2)

= l:‘lf(ll)] _ bllls[f(ll)lz _ O0A by ") _ M) ]
B 2 } Ch{b[( (T,t,)—f(t,))e —b

e BT _ _bg(T.t,) -8
i 5’[" : +(g(T,t,}—T)e“”+C,_ . ;))A{e“—e”““}]=

3| =

b (3.24)

5. Approximation Solution Procedure
To minimize the total middling cost per unit time, the optimal values of t; and T can be determined by simultaneously
solving the given equations for these variables.

oC
e
¥ (3.25)
cC
a7 -0
¢ (3.26)
This holds true provided that t; and T satisfy the following specified conditions.
o*C d’C
=>03 —>0
a or’ (3.27)
2
a*C)( &°C o°’C >0
a2 )\ er? ) | aer
(3.28)

Equations (3.25) and (3.26) can each be expressed in the following equivalent forms.

Y[C"{wb_‘f_aﬁt?-t_buBt{x-z} DGB{"' bi 'Hq(l)[c" f(t,)

2 B+1  2(B+2)

fi+1 pr2 pel B+l
aplf @I baplf@)I™ o ot bat ()

B+1 B+1 : B+1 B+1

+b[f (t,)]° +
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—at,[f(t,)]" —bat,[f (t,)]*" |+ Cp, {alf (t,)]" + balf (t,)]"" — at] —batf(t,)}

~CB{g(T.t) ~F(t,) )™ ~C, (1-8)e" ™ |+C, [at! £(t,) ~£(t,)

- blf (t,)]? i bat![f (t,))?

B alf (1))

_bolf (t,)]"?

2 2 B+1

-1 5
'Cnuﬁ[l‘f () + W} _c. [

5’ bi (1) _chgll.l‘ll"

B+2 ]

J

- (‘;’;b) {em — ™I :Jg'('l"_[l) =0
- (3.29)
And
R+TC [hA{ b (1) _ Im“”}g(T[)‘* ( ’blg(Tl) T[cl,[
b b |
4 [eb[ — "B(T.4) )g'(']‘ t,) }] -TC, (1- 8)Ae™ =0
_ (3.30)

The solutions to these equations can be obtained using
appropriate numerical computational methods. In this
revised study, an order-level inventory model is
developed specifically for deteriorating items. The
demand is considered as an exponential function of
time, while the replenishment rate is assumed to
depend on the demand function. The deterioration of
units in the inventory system is treated as time-
dependent. The model also allows for shortages, which
are partially backlogged, enabling a more realistic
representation of inventory behavior under dynamic
demand and deterioration conditions.

6. Numerical Illustration

The previous theory is illustrated through a numerical
example with specific parameter values. The table
below summarizes all the key parameters used in this
example, including demand characteristics, buyer and
vendor costs, deterioration rate, delay periods, and
interest rates. These parameters provide a clear
overview of the data utilized for analyzing all possible
cases of the inventory model.

Table 3.1: Key Parameters for the Order-Level Inventory Model Example

Parameter | Value Description

a 500 Demand parameter

b 5 Demand parameter

c 2 Demand parameter

d 1 Demand parameter

C 35 Buyer’s purchase cost per unit

Cbh 0.2 Buyer’s annual holding cost per dollar
Cbs 500 Buyer’s ordering cost per order

Sb 50 Buyer’s shortage cost per unit

Cv 20 Vendor’s unit cost

Cvh 0.2 Vendor’s annual holding cost per dollar
Cvs 1000 Vendor’s setup cost per order

K 2 Vendor’s production rate per year

0 0.01 Deterioration rate
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M 15 days | First delay period
N 30 days | Second delay period
Ile 0.05 Interest earned

Icl
Ic2

0.10
0.20

Interest charged during first period
Interest charged during second period (Ic2 > I1)

The following table presents the computed values of
order quantity nnn, cycle time T», replenishment time
ti, variable cost (VC), backorder cost (BC), and total

cost (TC) under the scenario where the retailer does
not pay any interest to the supplier.

Table 3.2: Retailer does not pay any interest to the Supplier

n T2 ti VvC BC TC

1 79.3545 10.32903 12903.73 9546.3 21976.2
2 103.819 10.18266 12885.2 9089.88 23246.3
3 117.696 10.11256 12867.49 10904.41 23771.9
4 126.172 10.07007 12853.59 11206.11 24059.7
5 131.781 10.04141 12843.09 11396.81 24239.9

The data in Table 3.2 illustrates the cost behavior for
a retailer who does not pay any interest to the supplier

indicating economies of scale per order, whereas
backorder cost (BC) increases due to higher frequency

across different order cycles (n = 1-5). As the number
of orders increases, the cycle time T rises from 79.35
to 131.78, while the replenishment time t; slightly
decreases. Variable cost (VC) gradually declines,

of shortages. Consequently, the total cost (TC) steadily
rises, reflecting the combined effect of decreasing VC
and increasing BC, highlighting a trade-off between
ordering frequency and cost efficiency.

Table 3.3 Supplier charges interest but Retailer has enough money to settle his account

n T, t1 vC BC TC
1 75.447 18.21459 13240.57 9071.47 22786.9
2 99.7640 18.11670 12991.90 10990.1 23982.0
3 106.6591 18.0958 12901.20 12076.9 24977.1
4 119.7628 18.05452 12883.95 12707.65 25591.6
5 126.2390 18.01943 12862.19 13060.81 25923.0
Table 3.3 presents the cost dynamics when the supplier per order, whereas the backorder cost (BC)

charges interest, but the retailer has sufficient funds to
settle the account. As the number of orders n increases
from 1 to 5, the cycle time T, rises from 75.45 to
126.24, while the replenishment time t; slightly
decreases, remaining around 18. The variable cost
(VC) gradually declines, showing marginal savings

consistently increases due to higher frequency or
volume of shortages. Overall, total cost (TC) steadily
rises from 22,786.9 to 25,923, reflecting the combined
influence of decreasing VC and increasing BC under
interest-bearing supplier terms.

Table 3.4 Retailer will have to be pay interest on unpaid balance at the rate of interest Ic1; Retailer does not
have enough money to pay off at M

N T, t vC BC TC
1 75.447 18.21459 12892.90 9781.00 22673.9
99.7640 18.11670 12846.00 11050.0 23896.0
3 106.6591 18.0958 12807.30 12101.11 24909.41
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4 119.7628 18.05452

12779.10

12810.41 25589.51

5 126.2390 18.01943

12761.00

12981.00 25742.00

Table 3.4 demonstrates the cost behavior when the
retailer must pay interest on unpaid balances at the rate
Ic1 because sufficient funds are unavailable. As the
number of orders N increases from 1 to 5, the cycle
time T, increases from 75.45 to 126.24, while
replenishment time t; slightly decreases, remaining

around 18. The variable cost (VC) gradually declines,
reflecting minor savings per order, whereas backorder
cost (BC) steadily rises due to accumulating shortages
and interest charges. Consequently, total cost (TC)
increases from 22,

673.9 to 25,742, highlighting the combined effect of interest-bearing unpaid balances and shortage-related costs.

Table 3.5 Retailer pays interest at the rate of L.z to the Supplier; Retailer does not have enough money to pay

off at N
N T t VvC BC TC
1 79.0218 21.2109 11046.52 12924.77 23971.29
2 101.8450 21.2911 10266.00 12610.00 22876.00
3 121.7701 21.3567 7483.68 12342.32 19826.00
4 129.7641 21.4801 8784.85 12191.02 20976.87
5 132.0098 21.5960 9909.2 11801.89 21711.09

Table 3.5 shows the cost behavior when the retailer
pays interest at the rate I, to the supplier and does not
have enough funds to settle the account at NNN. As
the number of orders increases from 1 to 5, the cycle
time T, rises from 79.02 to 132.01, while the
replenishment time t; slightly increases from 21.21 to
21.60. Variable cost (VC) decreases initially, reaching
a minimum at N=3, then rises, indicating non-linear
cost savings. Backorder cost (BC) gradually declines,
reducing shortage impact. Overall, total cost (TC)
decreases initially from 23,971.29 to 19,826 at N=3,
then increases, suggesting an optimal order number
exists that minimizes total cost under these conditions.

7. Observation

The data clearly indicates that individual optimal
solutions for the supply chain participants vary
significantly; however, there exists an overall solution
that minimizes the total operating cost for the entire
supply chain. An increase in the interest rate charged
by the supplier leads to a rise in the buyer’s cost (BC)
while simultaneously reducing the vendor’s variable
cost (VC). Nevertheless, when the retailer possesses
sufficient funds to settle the account, they can take
advantage of the credit period and benefit from
reduced financial burden. Examining the tables, the
optimal solution from the buyer’s perspective occurs
at n=1, whereas the vendor’s cost and the overall
supply chain cost are minimized at n=3, highlighting
the difference between individual and system-wide
optimal strategies. It is also observed that credit period
policies do not affect the marketing price of the

commodity. In this section, a realistic and practical
demand rate has been introduced, which depends on
multiple factors, including the available stock,
marketing price, and time, while also incorporating
practical considerations such as item deterioration,
shortages, and supplier credits. The model accounts
for different types of inventory systems, reflecting real
market conditions where consumer demand is
influenced by multiple interrelated factors. In
contemporary markets, where customer preferences
and purchasing behavior change rapidly, it becomes
essential to consider these multiple factors when
predicting demand. The demand rate proposed in this
model accurately reflects this complexity, providing a
more comprehensive and realistic approach for
inventory management.

This planned model is particularly relevant in current
market conditions, as nearly all products exhibit
variable demand influenced by stock availability,
selling price, and time. It demonstrates its applicability
when suppliers extend trade credit to retailers,
providing a framework for minimizing total operating
costs while addressing shortages, deterioration, and
financial constraints. Overall, the model serves as a
practical tool for decision-making in modern supply
chains, ensuring optimized performance under
realistic economic and market conditions.

8. Conclusion

A two-echelon supply chain model for deteriorating
items with quadratic demand has been developed
under a progressive credit period framework. In
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practical terms, the allowance of a progressive credit
period for settling replenishment accounts leads to a
marginal increase in the economic renewal interval
and order quantities, while significantly reducing the
annual total cost. The increase in order quantity under
delayed payment conditions reduces the need for
frequent ordering, making inventory management
more efficient. These characteristics make the study
both practical and distinctive. The model is highly
applicable to a wide range of commodities in today’s
dynamic market environment, as it closely reflects
contemporary economic conditions and operational
realities. The proposed model provides a systematic
approach to determining optimal industrial output
under expected scenarios, offering decision-makers a
reliable method for minimizing total supply chain
costs while accounting for item deterioration, shortage
costs, and credit terms. Additionally, the study
highlights the influence of various system constraints
on the optimal solution, providing insight into how
different operational limits affect cost and ordering
strategies. The framework also lays the groundwork
for further research, including extensions to stochastic
demand conditions and other more realistic market
scenarios. Overall, the model represents a valuable
tool for modern supply chain management, integrating
financial, operational, and market considerations to
achieve practical, cost-effective, and sustainable
inventory policies.
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