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Abstract— When training for hazardous operations, real- 

time stress detection is an asset for optimizing task 

performance and reducing stress. Stress detection systems 

train a machine-learning model with physiological signals 

to classify stress levels of unseen data. Unfortunately, 

individual differences and the time-series nature of 

physiological signals limit the effectiveness of generalized 

models and hinder both post-hoc stress detection and real-

time monitoring. This study evaluated a personalized 

stress detection system that selects a personalized subset of 

features for model training. The system was evaluated 

post-hoc for real-time deployment. Further, traditional 

classifiers were assessed for error caused by indirect 

approximations against a benchmark, optimal probability 

classifier (Approximate Bayes; A Bayes). Healthy 

participants completed a task with three levels of stressors 

(low, medium, high), either a complex task in virtual reality 

(responding to spaceflight emergency fires, n =27) or a 

simple laboratory-based task (N-back, n =14). Heart rate, 

blood pressure, electrodermal activity, and respiration 

were assessed. Personalized features and window sizes 

were compared. Classification performance was 

compared for A Bayes, support vector machine, decision 

tree, and random forest. The results demonstrate that a 

personalized model with time series intervals can classify 

three stress levels with higher accuracy than a generalized 

model. However, cross-validation and holdout 

performance varied for traditional classifiers vs. A Bayes, 

suggesting error from indirect approximations. The 

selected features changed with window size and tasks, but 

found blood pressure was most prominent. The capability 

to account for individual difference is an advantage of 

personalized models and will likely have a growing 

presence in future detection systems. 

 

Keywords: Time-Series Data Classification, Approximate 

Bayes Classifier, Electrodermal Activity (EDA), Heart 
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I. INTRODUCTION 

Despite extensive training in responding to an 

emergency, a person’s response to an actual 

emergency can be negatively affected by the 

stressfulness of the situation. Stress can result in a 

cascade of physiological changes that may alter. 

Behavioral patterns, situational awareness, decision 

making, and cognitive resources [1]. An inability to 

cope with the stress of a high-stress condition can 

decrease task performance and thereby risk mission  

 

failure, injury, or death [2]. Consequently, developing 

resiliency to this situational stress through improved 

training may lead to better outcomes. To that end, using 

real-time monitoring of a person’s stress responses to 

customize the stressfulness of training scenarios may, 

in turn, lead to more appropriate handling of actual 

hazardous operation [3], [4]. Stress detection using 

machine learning has been challenging for several 

reasons. First, there are individual differences in the 

appraisal of, and physiological responses to, stressful 

situations. Numerous stress detection approaches have 

attempted to reduce technical complexity by 

generalizing their models to a broad  

population, or the ‘‘average’’ response [3]. However, 

the stress response to a unique situation is largely 

subjective, and  

personalized stress detection models may be more 

robust to individual differences [5], [6]. The second 

challenge is that  

the time series nature of physiological signals can be 

problematic. The physiological stress response has 

temporal and feature correlations. These correlations 

may violate the machine learning assumption that the 

data are independently and identically distributed, 

thereby leading to biased results [7]. An additional 

challenge is interpreting how well model estimations 

match the true conditional probabilities of a subject’s 

stress levels. Stress detection models rely on 

traditional machine learning algorithms that make 

data- driven approximations to estimate the chance 

that the individual is experiencing a state of stress 

given their physiological responses. However, these 

estimations are often indirect and without a benchmark 

for comparison. From classical statistics research, the 

Bayes theorem is theoretically the optimal solution and 

a classifier given the same parameters as Bayes 

theorem will have the lowest probability of error [8]. 

The Bayes theorem uses an empirical density 

distribution as a true prior probability, which can be 

used to calculate the conditional probability of each 

class. The classifier selects the class with the greatest 

posterior probability of occurrence, also known as 

maximum a posteriori. Machine-learning algorithms 

attempt to approximate the density distributions. If the 

density estimates of the classifier converge to the true 

densities, then the estimated probability represents the 

true probability of occurrence and a classifier that 

mailto:swaroopa@lords.ac.in


. ISSN 2277-2685 

IJESR/April-May. 2025/ Vol-15/Issue-2s/1598-1604 

Syed Hameed Uddin et. al., / International Journal of Engineering & Science Research 

 

1599 

 

approximates Bayes becomes an Optimal Bayes 

classifier. However, these approximations can have 

varying accuracy due to assumptions made by the 

algorithm, such as independence of predictors [9]. 

Thus, it can be difficult to interpret the model’s logic. 

Physiological systems are known to have a high 

degree of dependence with regard to a stress response, 

because they are often initiated by the same neuro 

endocrine axis [10]. Some researchers have shown 

that classifiers may account for dependencies using 

multivariate kernel density estimators [11]. Therefore, 

it may be beneficial to evaluate supervised machine 

learning classifiers against a benchmark optimal 

classifier that approximates Bayes using a density 

distribution estimated through multivariate kernel 

density estimation for stress detection. To achieve 

real-time and continuous monitoring of stress levels, 

new approaches are needed to analyze time series for 

physiologically-based stress detection [12]. Real- 

time stress detection can enable closed-loop 

automation to either modify the training environments 

to better match the trainee’s responses or better assess 

individual stress during staged or real operations [13]. 

In datasets with repeated measurements at multiple 

times that present uncertainty from randomness or 

incompleteness, such as multiple measures of 

physiological data, multivariate kernel density 

estimators may help increase detection accuracy. To 

address these challenges, the goal of this research is 

to assess the objectivity, reliability, and validity of a 

personalized model methodology. The first research 

question focuses on objectivity, and whether the 

stressor levels can show distinct levels in personalized 

features used for the classification  

model while accounting for individual differences in 

physiology. This will provide confidence that the 

model is designed for the appropriate context and that 

the training data reflect distinct ground truth levels. 

The second research question focuses on the system’s 

reliability by evaluating the performance of the time-

series interval approach using a post- hoc model 

comparing between a standard laboratory cognitive 

task and a complex job-specific task, window sizes, 

classifier validation techniques, and features selected 

for each individual. The third research question 

focuses on the validity of the system by seeking to 

understand whether indirect approximations 

influence traditional supervised machine learning 

classifiers compared to a Bayes classifier, known as 

Approximate Bayes (A Bayes), which uses direct 

approximations of optimal stress classes through 

multivariate kernel density estimation. This research 

is part of a larger development effort to design VR 

training scenarios that can dynamically adapt a virtual 

environment using real-time stress detection [14]. To 

answer these research questions within the constraints 

of the larger system, the experiment will assess a time-

series interval approach to stress detection for a post- 

hoc model of physiological response data, its 

accuracy in detecting participant stress using a 

collected during stressful tasks, and provide the 

architecture for a real-time stress detection system that 

uses this classification methodology. Validating a 

machine learning pipeline post-hoc allows for 

translation to real-time stress detection and 

applications for stress monitoring. 

 

II. RELATED WORK 

A. Existing Research and Solutions 

Stress detection in drivers is a critical area of research, 

playing a vital role in ensuring road safety by 

identifying and mitigating cognitive overload, fatigue, 

and emotional distress that can impair driving 

performance. With advancements in artificial 

intelligence (AI), machine learning (ML), and 

wearable sensor technology, real-time stress 

monitoring has significantly evolved, enabling 

continuous, non-invasive tracking of physiological 

signals to assess stress levels accurately. Traditionally, 

stress detection relied on subjective self-reporting and 

behavioral observation, which lacked reliability and 

real-time applicability. However, integrating 

physiological signal-based AI models has transformed 

this field, offering objective, automated, and 

continuous stress monitoring systems. 

Recent studies have demonstrated the effectiveness of 

Multi- Task Neural Networks (MT-NNs) in stress 

detection, particularly in incorporating subject-

specific layers that enhance personalized stress 

monitoring. Unlike conventional classifiers such as 

Support Vector Machines (SVM), Decision Trees 

(DT), and Random Forest (RF), MT-NNs can process 

diverse physiological signals, including heart rate 

variability (HRV), skin conductance (electrodermal 

activity, EDA), respiration rate, and blood pressure, to 

provide highly accurate stress classification. The 

advantage of MT-NNs lies in their ability to adapt to 

individual physiological responses, overcoming the 

limitations of generalized models that fail to account 

for inter-individual variability. A study by Sarker et al. 

(2021) highlighted that personalized models 

incorporating deep learning architectures outperform 

traditional machine learning models, achieving 

superior stress classification accuracy in real-time 

applications. 

The integration of biometric sensors, AI-driven 

analytics, and virtual reality (VR)-based simulations 

has further advanced stress classification. Wearable 

devices equipped with Photoplethysmography (PPG) 

sensors, commonly found in smartwatches and fitness 

bands, enable continuous and non- invasive heart rate 

monitoring. These sensors provide real- time 

physiological data that AI models analyze to detect 

deviations indicative of stress. VR-based driving 

simulations, which mimic real-world traffic 

conditions, adverse weather scenarios, and emergency 

situations, offer controlled environments for assessing 
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stress responses. By combining PPG sensors with VR 

simulations, researchers have been able to ensure 

consistent data collection, thereby improving the 

reliability and accuracy of stress detection systems. A 

study by Li et al. (2020) demonstrated that VR-based 

stress evaluation, coupled with AI-driven analysis, 

significantly improves the precision of stress 

classification, making it a promising approach for 

driver monitoring. 

 

Real-time stress prediction has also been enhanced by 

multi- modal approaches that integrate various 

physiological and behavioral signals. In addition to 

HRV and EDA, electrocardiogram (ECG) sensors 

provide detailed insights into heart activity, capturing 

subtle variations associated with stress responses. 

Studies have shown that models trained on ECG and 

EDA data outperform those relying on a single 

physiological metric, as they can dynamically adapt 

to an individual’s unique stress patterns. 

Furthermore, integrating sociometric data—such as 

voice tone analysis, facial expressions, and speech 

patterns—enhances classification accuracy, making 

these models highly effective in high-stress 

environments, including aviation, military 

operations, emergency response, and professional 

driving. Research by Kim et al. (2021) found that 

deep learning models combining physiological and 

behavioral data achieved a classification accuracy of 

over 90%, demonstrating the potential of multi- 

modal approaches in stress detection. 

EDA sensors, in particular, have proven highly 

effective in distinguishing between calm and distress 

states. These sensors measure the electrical 

conductance of the skin, which varies with sweat 

gland activity regulated by the autonomic nervous 

system. Since EDA is closely linked to emotional 

arousal, it provides a reliable indicator of stress levels. 

The advantage of EDA sensors is their non-

invasiveness and ability to continuously monitor stress 

without requiring active user input. This makes them 

highly suitable for applications in healthcare, 

workplace well-being programs, and driver 

monitoring systems aimed at reducing fatigue-related 

accidents. Research by Setz et al. (2019) 

demonstrated that EDA-based stress monitoring 

systems could accurately differentiate between 

different levels of stress, highlighting their potential 

for real-time intervention in high-risk environments. 

 

Despite significant advancements, several challenges 

remain in improving the sensitivity and accuracy of 

sensor-based stress monitoring. Future research 

should focus on refining sensor sensitivity to detect 

minute physiological changes with greater precision. 

Expanding the range of physiological metrics by 

incorporating additional biomarkers—such as cortisol 

levels (a biological stress marker), 

electroencephalography (EEG) signals for brain 

activity analysis, and pupil dilation tracking—could 

further enhance stress detection accuracy. The 

adoption of deep learning techniques, such as 

Recurrent Neural Networks (RNNs),  

 

Convolutional Neural Networks (CNNs), and 

Transformer- based architectures, can also improve the 

ability to capture complex temporal dependencies in 

physiological data, leading to more robust real-time 

predictions. 

 

Another critical area for development is the integration 

of AI- driven adaptive feedback systems that provide 

personalized stress management recommendations. 

These systems could leverage biofeedback techniques, 

machine learning-driven pattern recognition, and 

predictive analytics to preemptively alert drivers 

before stress reaches critical levels. By incorporating 

natural language processing (NLP) and human- 

computer interaction (HCI) technologies, these systems 

could also offer voice-based or visual guidance, 

suggesting stress- relief strategies such as controlled 

breathing exercises, soothing auditory stimuli, or 

adaptive vehicle settings to enhance comfort. A study 

by Gjoreski et al. (2022) explored AI-driven stress 

intervention systems and found that biofeedback-

based techniques significantly reduced stress in real-

time scenarios, emphasizing the importance of 

integrating adaptive response mechanisms. 

 

The continuous evolution of AI, ML, and wearable 

sensor technology is expected to drive further 

innovations in stress detection and intervention. As 

these systems become more sophisticated and widely 

adopted, they have the potential to transform stress 

management in various domains beyond driving, 

including healthcare, workplace safety, sports 

performance optimization, and military training. By 

refining sensor technologies, improving data 

processing algorithms, and integrating advanced deep 

learning techniques, future research will pave the 

way for highly accurate, real-time stress monitoring 

solutions that enhance overall well-being and safety. 

 

B. Challenges of Physiological Stress Classification 

A major challenge in using physiological signals for 

detection is the rigidness of generalized models in 

accounting for physiological differences between 

people. Stress varies among individuals due to 

differences in appraisals of the stressor and the 

perceived threat, but also the body’s capability to 

enact the physiological responses. For example, an 

EDA-based generalized classifier that is deployed and 

tested on multiple people may have higher 

classification error among a subset of this group, since 

as much as 25% of the population are EDA non-

responders or hypo-responders. By not accounting for 
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differences in physiology, inherent errors are created 

when using generalized models for physiological 

detection. This challenge has led some researchers to 

believe that personalized models may be more 

accurate. Revising the example, higher accuracy may 

be achieved by the EDA- based classifier if the model 

accounts for the individual’s respective EDA level 

and reactivity, or instead rely on other sensors when 

EDA is not a reliable predictor for that individual. 

While EDA is one of many physiological systems, 

some may be more susceptible to individual 

differences than others (e.g., cortisol). Supervised 

classifiers can be personalized by having the stress 

detection system create a model using training data 

from the individual and by selecting discriminate and 

relevant features for the individual[15]. 

 

Another challenge is that supervised classifiers have a 

degree of uncertainty depending on how they 

estimate probability  

distributions in order to label stress levels. Supervised 

models produce a probability distribution for each 

stress level (class) for a set of physiological signal 

data points (vectors); this distribution determines 

which class is most probable at a given time. 

However, rather than creating a distribution directly 

from the dataset, the probability distribution is 

created indirectly (and often ad hoc) based on the 

technical specifics of a classification method. For 

example, decision tree classifiers produce rectangles 

that partition the input space and calculate the 

approximate class probabilities based on the number 

of vectors located within each rectangle. Thus, the 

class probability is constant for each rectangle and 

always discontinuous at the rectangle boundaries, 

leading to a probability that is more defined by how 

the rectangles are positioned within the input-space 

rather than the vector distribution across the entire 

input-space. Similarly, SVMs create a hyper-planes 

intended to produce maximum separation between 

class vectors in the input space. Ad hoc “approximate 

class probabilities” are often created using soft max 

functions of distances from vectors to hyperplanes— 

a practice that may not match empirical probability 

estimates[15]. The process by which these ad hoc 

methods approximate class probabilities does not 

easily translate to meaningful cause/effect insights 

related to either changes in the environment or the 

measured changes in physiological measurements. 

The translation of a post-hoc system (i.e., offline) to 

real-time (i.e., online) brings another set of challenges 

commonly associated with data collection in 

ambulatory settings that are less controlled. One major 

challenge is the need to process and analyze data in 

real-time, which requires a system with high 

computational power and efficient algorithms that 

have minimal loss of data and error propagation 

during data analysis. Another challenge is the need to 

transmit data from the sensors to the system in real-

time, which requires a reliable and high-speed wireless 

network. Ensuring the privacy and security of the data 

is another important consideration, as the data may 

contain sensitive personal information and could be 

vulnerable to cyber-attacks. Additionally, there may 

be challenges in accounting for environmental context, 

as the physiological indicators of stress may be 

affected by other factors such as physical activity, 

medication, and ambient temperature [16]. 

 

Any classifier can be used with a personalized 

detection approach, but the classifier selected should 

maximize the confidence that the approximate class 

probabilities match empirical probability estimates. 

Since Bayes theorem provides more direct estimations 

of conditional probabilities, its effects are more 

interpretable and may provide insight into whether the 

aforementioned traditional classifiers have error 

resulting from indirect approximation. This can be 

achieved by implementing the Bayes theorem in a new 

approximately Bayes classifier (ABayes). To that end, 

along with a real-time personalized stress detection 

system, the secondary goal of this research is to assess 

the extent to which traditional supervised machine 

learning methods (decision tree, support vector 

machine, and random forest classifiers) are limited 

compared to an optimal probability; a classifier based 

on Bayes theorem using multivariate kernel density 

estimates. 

 

C. Problem Statement 

Accurately detecting stress in real-time during 
hazardous operations is critical for optimizing task 
performance and ensuring safety. However, generalized 
stress detection models struggle with individual 
physiological differences and the time-series nature of 
physiological signals, leading to reduced accuracy and 
reliability. Traditional classifiers often rely on indirect 
approximations, introducing errors that hinder both 
post-hoc stress assessment and real-time monitoring. 
There is a need for a personalized stress detection 
system that dynamically selects optimal features and 
adapts to individual variations, improving 
classification accuracy across different tasks and stress 
levels. This study aims to address these challenges by 
evaluating a personalized machine-learning model for 
stress detection, comparing its performance against 
traditional classifiers and benchmark probabilistic 
models. 

III. RESEARCH METHODOLOGY 

This paper describes the development of a 
personalized physiological-based stress detection 
system to classify acute stress using feature selection 
on intervals of the time-series data. To train the 
machine learning model, participant physiological 
signals were collected for three stressor levels during 
either a spaceflight emergency fire procedure on a VR 
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International Space Station (VR-ISS) or a well-
validated and less-complex N-back mental workload 
task. Several previous studies have detected stress 
induced by N-back tasks viamachine learning 
methods, both alone [17], [18] and with another job-
specific task. Therefore, comparing a job specific VR-
ISS task to the N-back using the same personalized 
approach is a way to assess the system’s reliability can 
work for multiple stress detection tasks. Each 
participant had features selected at different interval 
window sizes, then those personalized features trained 
the classifier model, and subsequently tested the 
classifier’s predictive accuracy. Since the stress 
response is complex and often unique, the analysis 
will explore which features are selected most for 
individuals depending on window size, and how this 
changes classification performance. Classifier 
performance was assessed using both holdout and 
cross-validation validation techniques to simulate 
how the model may perform on unseen data as an 
analog for deployment in real-time. The novelty and 
contribution of this research is to show that stress 
detection may benefit from using personalized time 
series approaches to quantify temporal patterns in 
physiological signals, to assess whether traditional 
classifiers are limited in approximating the optimal 
Bayes solution, that certain features may be better at 
different windows sizes, and that this approach has a 
suitable performance for detecting stress for a VR 
spaceflight emergency training procedure. The 
system design includes the input, processing, output 
and key features. The physiological data such as heart 
rate, electrodermal activity, and respiration from 
participants during stress including tasks. The data is 
analysed using machine learning models, with feature 
selection applied on data. The accurate stress level 
classification for real-time monitoring and training 
applications. The personalized model improves 
accuracy by accounting for individual differences and 
task-specific responses. Physiological signals, 
including heart rate, blood pressure, electrodermal 
activity (EDA), and respiration, were continuously 
recorded during task execution. The collected data 
underwent preprocessing, including signal filtering 
and artifact removal, to ensure high-quality input for 
model training. A personalized feature selection 
approach was employed, where an optimal subset of 
features was identified for each participant, allowing 
the model to account for individual physiological 
variations. Additionally, different time-series 
window sizes were examined to determine their 
impact on classification performance.[19] 

 

The classification models evaluated in this study 
include traditional machine learning classifiers—
Support Vector Machine (SVM), Decision Tree, and 
Random Forest— alongside an optimal probability 
classifier, Approximate Bayes (ABayes), which 
served as a benchmark. The classifiers were trained 
using both personalized and generalized feature sets, 
and their performance was assessed using cross-

validation and holdout testing. Classification 
accuracy, as well as variations in selected features 
across window sizes and tasks, were analyzed. 
Notably, blood pressure emerged as a prominent 
physiological marker for stress detection. 

The evaluation focused on comparing the 
classification accuracy of personalized models against 
generalized models and assessing the degree of error 
introduced by indirect approximations in traditional 
classifiers. The results provide insights into the 
feasibility of deploying personalized stress detection 
models in real-time applications. The ability to 
dynamically adapt to individual physiological 
responses suggests that personalized models hold 
significant promise for enhancing stress monitoring 
systems in hazardous operational environments. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1. Proposed Architecture Model 

 

IV RESULTS & DISCUSSION 

The results of this research highlight the significance 

of adopting a personalized time-series interval 

approach in real- time stress detection systems, 
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addressing the inherent variability in individual stress 

responses and the dynamic nature of physiological 

signals. The study confirmed that both simple and 

complex tasks elicited distinct stress levels, validating 

their effectiveness as ground truth for training 

machine learning models. This differentiation in stress 

levels provided a reliable foundation for assessing 

model performance and optimizing the use of 

physiological sensors. A key finding was the impact 

of time-window selection on sensor effectiveness and 

feature extraction. By analyzing varying window 

sizes, the study identified which physiological signals 

and sensor-derived features contributed most to stress 

classification at different time intervals. This insight 

is crucial in designing real-time stress detection 

systems that adapt to temporal variations in stress 

responses, improving classification accuracy and 

reducing false positives. The results demonstrated 

that a personalized machine learning model 

outperformed a generalized model, reinforcing the 

importance of individualized stress assessment. 

Personalized models leverage unique physiological 

patterns, leading to more accurate stress predictions, 

while generalized models often struggle with inter-

individual variability. This finding aligns with 

previous research emphasizing the superiority of 

subject-specific adaptations in stress monitoring 

systems. Additionally, the study assessed the effect of 

indirect approximations in supervised machine 

learning classifiers by comparing their performance 

against a benchmark optimal classifier. 

 

V CONCLUSION 

This study highlights the effectiveness of a 
personalized stress detection system in addressing 
individual differences in physiological responses and 
the time-series nature of stress signals. By leveraging 
a personalized time-series interval approach, the 
model demonstrated superior classification 
performance compared to generalized models, 
reinforcing the importance of tailoring feature 
selection for each individual. The results further 
revealed that window size variations influence the 
relevance of physiological features, with blood 
pressure emerging as a key marker for stress 
classification. Additionally, the comparison of 
traditional supervised classifiers with the benchmark 
A Bayes classifier indicated that indirect 
approximations can introduce minor to moderate 
variations in performance. These findings emphasize 
the necessity of carefully selecting human-machine 
interfaces (HMIs), sensors, and features to ensure 
reliable stress detection. Future work will focus on 
refining personalized models by incorporating 
adaptive mechanisms that account for temporal 
variations in stress physiology, with the goal of 
enhancing real-time stress monitoring and 
intervention strategies in high-risk environments. 
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