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ABSTRACT 

A fractional-order derivative nonlinear financial model of economic dynamics is presented. By eliminating the limit 

operation, a derivative of the Jumari type may be discretized. The model's parameters and coefficients are estimated 

using the least squares method. An example application of this novel method for modeling financial systems is the 

modeling of the interest rate, investment, and inflation dynamics of the Indian national financial system. Empirical 

findings are shown over a range of discretization time steps, and the difference between the estimated data and the 

real data is displayed graphically. Interesting insights into the model are revealed by a comparison with a previous 

model of financial derivatives of integer order. The optimization of management strategy and decision technology 

in India's financial system may be greatly aided by using the fractional-order discrete approach to a nonlinear 

financial model. This reduces the risk of making incorrect predictions about the economy. 

 

INTRODUCTION 
Fractional calculus's roots may be traced back to the late seventeenth century, during the time when Newton and 

Leibniz were developing their theories of classical differential and integral calculus [13]. After the introduction 

of d for the first derivative in contemporary differential calculus, a later dated notation, dt, was developed. 

 

In 1965, l'Hospital posed a question to Leibniz about d2, the derivative of order 1.  

Derivatives and integrals of arbitrary real or complex order are the subject of fractional calculus, a term coined by 

the notation 1 2 2 dt 2. Therefore, the classical calculus that we are familiar with today is as ancient as the fractional 

calculus that is still in use today. The field of mathematics known as fractional calculus is 310 years old. Many 

studies have shown the usefulness of fractional models in describing physical and biological processes and 

systems. Examples of fields that use this are electro-analytical chemistry, neuron modeling, diffusion processes, 

damping laws, rheology, and visco-elasticity. Fractional derivatives have recently found use in the domains of 

psychology and biology [19]. Although the ideas and mathematics behind fractional differential equations date 

back many centuries, it was only within the last few decades that it was understood that these derivatives might 

be used in very effective modeling of the actual world. Despite its age, it was not used in the fields of physics, 

engineering, or finance for quite some time. However, during the last 20 years, not only mathematicians but also 

physicists, engineers, and financial analysts have shown an increasing interest in fractional calculus. Financial 

mathematics has also benefited from an expansion of fractality ideas [14]. The applications of fractional calculus 

to classical analysis are almost limitless. 

 

Therefore, during the last 35 years, a growing number of researchers and analysts in the fields of physics, 

chemistry, engineering, life sciences, finance, and other disciplines have been drawn to the study of fractional 

differential equations. Numerical approaches are used to gain most conclusions concerning solving fractional 

differential equations since only a small subset of these equations can be solved analytically. Large-amplitude, 

periodic changes in the financial and economic system have garnered a lot of attention as of late [12, 15, 16, 17]. 



 

 

In light of this, it is challenging to statistically detect multicollinearity between various financial variables and 

economic factors when examining the dynamics of financial behavior. Several nonlinear financial models have 

been constructed in the last decade to investigate periodic, chaotic, and memory-based behaviors in financial and 

economic systems in light of the widespread recognition that these fields invariably exhibit nonlinearity. In 

particular, [2-6,9] examine the intricate dynamics of economic cycles by using the van der pol model. By 

introducing a forcing function, forced van der pol equations are useful for modeling the intricate interdependencies 

between economic variables. national economy and the international economy in an era of seasonal effects, such 

as the sun's cycle, on the ups and downs of the economy. Nonlinear dynamics of financial and economic systems 

have gained in popularity and precision thanks to these and other studies. All prior studies have focused on the 

nonlinear dynamics of financial and economic systems, namely on their cyclical and chaotic behaviors. A 

simplified macro-financial model of interest rates, investment demand, and inflation was built and evaluated [10, 

11, 20] for things like equilibrium, periodic stability, chaotic behavior, and so on. By taking into account 

Goodwin's nonlinear accelerator model with periodic investment outlays, the complex motion in nonlinear 

dynamic systems is investigated in [8]. It is known that nonlinear economic models often display transient chaotic 

dynamics. Since chaotic dynamics has a negative impact on properly and successfully anticipating economic 

outcomes, there has been an uptick in studies aimed at analyzing and taming the nonlinear dynamics that underpin 

financial and economic markets. 

 

By taking into account different amounts of time steps, this research finds the ideal fractional orders and parameters 

for discretizing financial systems. Unlike integer order models, fractional order models need access to the system's 

memory to function properly. Foreign exchange rates, GDP, interest rates, output, unemployment, and stock market 

prices are only few of the financial variables whose magnitudes may have extremely long memory, i.e. system 

history. It shows that the largest time scales in the financial markets coincide with the correlations [18]. What this 

implies is that past changes in financial variables may be used to predict future changes. In order to evaluate how 

well the empirical financial model is fitted, we create a new discrete financial model. This is the first continuous or 

discrete factional-order dynamic financial model of a country's or region's actual financial and economic data, with 

a focus on India, as far as the authors are aware. It is anticipated that the publication of this report would encourage 

more study in this area.  

This work is structured as follows: Section 2 introduces the mathematical prerequisites. We describe the fractional 

form of the newly published integer-order financial model, namely the nonlinear dynamic econometric models of 

the financial system, and estimate the parameters using the concept of least squares in Section 3. In Section 4, we 

use discretized fractional-order optimization and estimate of a nonlinear financial model to conduct an empirical 

study of Indian economic and financial data from 1981 to 2015 and portray the dynamic behavior. Section 5 provides 

some last thoughts on the matter. The outcomes of current studies in this area are summarized in Table 1. 

 
Table 1: Summary of Some Empirical Research on Financial Modelling 

Author(s) Period & 
Market 

 Characteristics Principle Comparative 
Analysis 

Model 

Chian et al. 

(2005) 

- Chian 

Type 

et al. Order, Chaos, 

unstable 

periodic 

orbits, Chaotic 

saddles & 

Intermittency 

Forced 

oscillator, 

saddle node 

bifurcation 

No Nonlinear 

Dynamic 

Chen (2006) - Caputo-Type Chaos Chaos No Nonlinear 

Fractional- 
order 

Xu et 

(2011) 

al. - Abel 
Differential 

Equation 

Memory Short 

Memory 

No Nonlinear 
Fractional- 

order 

Yue et 

(2013) 

al. 1980-2011, 
Japan 

Jumari Type Dynamic 

behaviour 

Least Square No Nonlinear 

Fractional- 
order 

Present 

Study (2017) 

1981-2014, 

India 
Jumari Type Dynamic 

behaviour 
Least Square Yes Nonlinear 

Fractional- 
order 



 

 

𝑞 1 

MATHEMATICAL PRELIMINARIES 

Here, we lay the groundwork for understanding fractional derivatives. 

 

For simplicity, we will refer to continuous functions as f(x): R R and constant dicretization spans as > 0. Here we 

provide a definition for the fractional difference of f(x) of order ( R, 0 1). 

∆𝛼 𝑓(𝑥) = ∑+∞ (−1)𝑘 (𝛼) 𝑓(𝑥 + (𝛼 − 𝑘)�) (1) 𝑘=0 𝑘 

 Then, we may write D f(t) = lim f(t), where f is the fractional derivative of t. 

�→0 

 ∆𝛼 𝑓(𝑡) 

 � 𝛼 

  (2)  For a continuously differentiable function u: [0, ) R, the modified fractional derivative of Jumarie's order is 

defined as in [7]. 

  

𝐷𝛼 𝑓(𝑡) = 𝛤(1 + 𝛼 − 𝑚)lim ∆𝛼 𝑓𝑚 (𝑡) (3) 

 𝑡 �→0 

 � 𝛼−𝑚 , 

 where m m + 1, where m = [], and the integer component of the actual number is denoted by []. In addition, if 0 1, 

 𝐷𝛼 𝑓(𝑡) = 𝛤(1 + 𝛼)lim ∆𝛼 𝑓(𝑡) 

  (4) 

 𝑡 �→0 

 � 𝛼 

 Several definitions of fractional derivative may be found in [1], however we will only be using Jumarie's definition 

here. The discrete version of Jumaie's fractional derivative may be expressed by the classical difference of function, 

multiplied by certain coefficients; this is possible because we can choose a short step size and eliminate the limit 

operation in (4). Using Jumaie's fractional derivative, we can now build both continuous and discrete financial 

models. 

 

MODEL DESCRIPTION AND ESTIMATION METHODOLOGY 
[11] have recently reported a dynamic model of finance, composed of three first order differential equations. The 

model describes the time-variation of three state variables: the interest rate, X, the investment demand, Y, and the 

price index, Z. The factors that influence changes in X mainly come from two aspects: first, contradictions from 

the investment market, i.e., the surplus between investment and savings, and second, structural adjustment from 

good prices. The changing rate of Y is in proportion to the rate of investment, and in proportion to an inversion 

with the cost of investment and interest rates. Changes in Z, on the one hand are controlled by a contradiction 

between supply and demand in commercial markets, and on the other hand, are influenced by inflation rates. By 

choosing an appropriate coordinate system and setting appropriate dimensions for every state variable, [11] offer 

the simplified finance model as: 

𝑋˙ = 𝑍 + (𝑌 − 𝑎)𝑋, 
𝑌˙ = 1 − 𝑏𝑌 − 𝑋2, (5) 

𝑍˙ = −𝑋 − 𝑐𝑍, 
 

where 𝑎 is the saving amount, 𝑏 is the cost per investment, and 𝑐 is the elasticity of demand of commercial markets. 

It is obvious that all the three constants 𝑎, 𝑏 𝑎𝑛𝑑 𝑐 are nonnegative coefficients with economic interpretations. 

 

Here, we consider the generalization of system (5) for the fractional incommensurate-order model which takes the 

form: 
𝐷𝑞1 𝑋 = 

𝑑     𝑋 
= 𝑍 + (𝑌 − 𝑎)𝑋, 

 𝑡 𝑑𝑡 𝑞 1 

𝐷𝑞2 𝑌 = 
𝑑 𝑞 2 𝑋 

= 1 − 𝑏𝑌 − 𝑋2, (6) 
 𝑡 𝑑𝑡 𝑞 2 

𝐷𝑞3 𝑍 = 
𝑑 𝑞 3 𝑋 

= −𝑋 − 𝑐𝑍 
 

𝑡 𝑑𝑡 𝑞 3 
 

where, 𝑞𝑖 ∈ (0,1] (𝑖 = 1,2,3) represent the fractional order of the derivatives. If 𝑞1 = 𝑞2 = 𝑞3 = 1, (6) reduces to 
the integer-order Chen system. Again the system (6) can written in the form of time variable 𝑡. 



 

 

𝑡 𝑡 𝑡 

𝐷𝑞1 𝑥 = 
𝑑 𝑞 1 𝑥𝑡 = 𝑧 + (𝑦 − 𝑎)𝑥 , 

 

𝑡 𝑡 𝑑𝑡 𝑞 1 𝑡 𝑡 𝑡 

𝐷𝑞2 𝑦 = 
𝑑 𝑞 2 𝑦𝑡 = 1 − 𝑏𝑦 − 𝑥 2, (7) 

 

𝑡 𝑡 

𝐷𝑞3 𝑧 
𝑑𝑡 𝑞 2 

= 
𝑑 𝑞 3 𝑧𝑡 = −𝑥 

 

𝑡 𝑡 

− 𝑐𝑧 

𝑡 𝑡 𝑑𝑡 𝑞 3 𝑡 𝑡 

 

where, 𝑥, 𝑦 𝑎𝑛𝑑 𝑧 represent the interest rate, investment, and inflation respectively. The subscript t indicates that 

the variable depends on 𝑡. Instead of considering the same expressions in fractional chaotic Chen system, we 

assume a more general form of the present financial model as: 
 

𝐷𝑞1 𝑥 = 𝑐 + 𝑎 𝑥 + 𝑎 𝑦 + 𝑎 𝑧 + 𝑎 𝑥2 + 𝑎 𝑦2 + 𝑎 𝑧2 + 𝑎 𝑥 𝑦 + 𝑎 𝑦 𝑧 + 𝑎 𝑧 𝑥 + 𝑢 = 

𝑡 𝑡 1 11   𝑡 12    𝑡 13   𝑡 14   𝑡 15    𝑡 16   𝑡 17    𝑡    𝑡 18   𝑡   𝑡 19   𝑡    𝑡 1𝑡 

𝑇 𝑒 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑐 𝑎𝑛𝑔𝑒 𝑖𝑛 𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 𝑤𝑖𝑡  𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑜𝑟𝑑𝑒𝑟 𝑤. 𝑟. 𝑡𝑜 𝑡𝑖𝑚𝑒 𝑡, 
 

𝐷𝑞2 𝑦 = 𝑐 + 𝑎 𝑥 + 𝑎 𝑦    + 𝑎 𝑧 + 𝑎 𝑥2   + 𝑎 𝑦2 + 𝑎 𝑧2 + 𝑎 𝑥 𝑦 + 𝑎 𝑦 𝑧 + 𝑎 𝑧 𝑥 + 𝑢 = 

𝑡 𝑡 2 21   𝑡 22   𝑡 23   𝑡 24   𝑡 25   𝑡 26   𝑡 27   𝑡    𝑡 28    𝑡   𝑡 29   𝑡    𝑡 2𝑡 

𝑇 𝑒 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑐 𝑎𝑛𝑔𝑒 𝑖𝑛 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡 𝑟𝑎𝑡𝑒 𝑤𝑖𝑡  𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑜𝑟𝑑𝑒𝑟 𝑤. 𝑟. 𝑡𝑜 𝑡𝑖𝑚𝑒 𝑡 , (8) 
 

𝐷𝑞3 𝑧 = 𝑐 + 𝑎 𝑥 + 𝑎 𝑦    + 𝑎 𝑧 + 𝑎 𝑥2   + 𝑎 𝑦2 + 𝑎 𝑧2 + 𝑎 𝑥 𝑦 + 𝑎 𝑦 𝑧 + 𝑎 𝑧 𝑥 + 𝑢 = 

𝑡 𝑡 3 31   𝑡 32   𝑡 33   𝑡 34   𝑡 35   𝑡 36   𝑡 37   𝑡    𝑡 38    𝑡   𝑡 39   𝑡    𝑡 3𝑡 

𝑇 𝑒 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑐 𝑎𝑛𝑔𝑒 𝑖𝑛 𝑖𝑛𝑓𝑙𝑎𝑡𝑖𝑜𝑛 𝑤𝑖𝑡  𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑜𝑟𝑑𝑒𝑟 𝑤. 𝑟. 𝑡𝑜 𝑡𝑖𝑚𝑒 𝑡 
 

Where 𝑢𝑖𝑡 (𝑖 = 1,2,3) are the random errors which are assumed to the white noise generally, 𝑥𝑡 = 𝑥(𝑡), 𝑦𝑡 = 

𝑦(𝑡) 𝑎𝑛𝑑 𝑧𝑡 = 𝑧(𝑡) indicate that the variables 𝑥, 𝑦 𝑎𝑛𝑑 𝑧 depending on time 𝑡. 
 

𝑓1 (𝑥𝑡 , 𝑦𝑡 , 𝑧𝑡 , 𝐴1 ) = 𝑐1 + 𝑎11 𝑥𝑡 + 𝑎12 𝑦𝑡 + 𝑎13 𝑧𝑡 + 𝑎 𝑥2 + 𝑎 𝑦2 + 𝑎 𝑧2 + 𝑎17 𝑥𝑡 𝑦𝑡 + 𝑎18 𝑦𝑡 𝑧𝑡 + 𝑎19 𝑧𝑡 𝑥𝑡 , 

𝑓2 (𝑥𝑡 , 𝑦𝑡 , 𝑧𝑡 , 𝐴2 ) = 𝑐2 + 𝑎21 𝑥𝑡 + 𝑎22 𝑦𝑡 + 𝑎23 𝑧𝑡 + 𝑎 𝑥2 + 𝑎 𝑦2   + 𝑎 𝑧2 + 𝑎27 𝑥𝑡 𝑦𝑡 + 𝑎28 𝑦𝑡 𝑧𝑡 + 𝑎29 𝑧𝑡 𝑥𝑡 , 

(9) 
24   𝑡 25    𝑡 26   𝑡 

 

𝑓3 (𝑥𝑡 , 𝑦𝑡 , 𝑧𝑡 , 𝐴3 ) = 𝑐3 + 𝑎31 𝑥𝑡 + 𝑎32 𝑦𝑡 + 𝑎33 𝑧𝑡 + 𝑎 𝑥2 + 𝑎 𝑦2   + 𝑎 𝑧2 + 𝑎37 𝑥𝑡 𝑦𝑡 + 𝑎38 𝑦𝑡 𝑧𝑡 + 𝑎39 𝑧𝑡 𝑥𝑡 

34 𝑡 

 

Where 𝐴𝑖 = (𝑐𝑖 , 𝑎𝑖1 , 𝑎𝑖2 , ...................... , 𝑎𝑖9), 𝑖 = 1,2,3; 

Then the model can be rewritten as: 

35    𝑡 36   𝑡 

𝐷𝑞1 𝑥 = 𝑓 (𝑥 , 𝑦 , 𝑧 , 𝐴 ) + 𝑢   , 
𝑡 𝑡 1 𝑡 𝑡   𝑡 1 1𝑡 

𝐷𝑞2 𝑦 = 𝑓 (𝑥 , 𝑦 , 𝑧 , 𝐴 ) + 𝑢 , (10) 

𝑡 𝑡 2 𝑡 𝑡   𝑡 2 2𝑡 

𝐷𝑞3 𝑧 = 𝑓 (𝑥 , 𝑦 , 𝑧 , 𝐴 ) + 𝑢 

𝑡 𝑡 3 𝑡 𝑡   𝑡 3 3𝑡 

 

According to (4), when 0 < 𝛼 < 1, the model (10) can be discretized as: 
𝐷𝑞1 𝑥 = 

𝑥(𝑡𝑛 +1)−𝑥(𝑡𝑛 ) 
𝛤(1 + 𝑞  ) = 𝑓 (𝑥 , 𝑦 , 𝑧 , 𝐴 ) + 𝑢   , 

𝑡 𝑡 (𝑡𝑛 +1−𝑡𝑛 )
𝑞 1 1 1 𝑡 𝑡   𝑡 1 1𝑡 

𝐷𝑞2 𝑦 = 
𝑦(𝑡𝑛 +1)−𝑦(𝑡𝑛 ) 

𝛤(1 + 𝑞 ) = 𝑓 (𝑥 , 𝑦 , 𝑧 , 𝐴 ) + 𝑢 (11) 

𝑡 𝑡 (𝑡𝑛 +1−𝑡𝑛 )
𝑞 2 2 2 𝑡 𝑡   𝑡 2 2𝑡 

𝐷𝑞3 𝑧 = 
𝑧(𝑡𝑛 +1)−𝑧(𝑡𝑛 ) 

𝛤(1 + 𝑞 ) = 𝑓 (𝑥 , 𝑦 , 𝑧 , 𝐴 ) + 𝑢 
𝑡 𝑡 (𝑡𝑛 +1−𝑡𝑛 )

𝑞 3 3 3 𝑡 𝑡   𝑡 3 3𝑡 

14 

15 16 



 

 

𝑖=1 

 

We estimate (11) based on empirical data to determine the relationship of these variables. From the form of the 

model (11), it is easy to find that there does not exists common parameters in three equations of it. Therefore, the 

above three multivariate regression equations can be estimated separately. To state the technical procedures, we 

take the first equation as an example. The estimation for the parameters in the other two equations is similar. 

 

Consider 𝑞1 = 1; then 
 

𝑥(𝑡𝑛 +1)−𝑥(𝑡𝑛 ) 
= 𝑓 (𝑥 , 𝑦 , 𝑧 , 𝐴 ) + 𝑢 (12) 

(𝑡𝑛 +1−𝑡𝑛 ) 1 𝑡 𝑡   𝑡 0 1𝑡 

 

Let 𝑌 = 
𝑥(𝑡𝑖+1)−𝑥(𝑡𝑖) 

, i = 1,2,.............. N − 1; then define the least squares (LS) function as: 
𝑖 (𝑡𝑖+1−𝑡𝑖) 

𝑆𝑆𝑅 (𝐴0 ) = ∑𝑁−1(𝑌𝑖 − 𝑓1 (𝑥(𝑡𝑖 ), 𝑦(𝑡𝑖 ), 𝑧(𝑡𝑖 ), 𝐴0 )2 (13) 



 

 

𝑖=1 

1 

The    LS    estimator of    the    regression parameter 𝐴⌃0  = arg min ∑𝑁−1(𝑌𝑖  − 𝑓1 (𝑥(𝑡𝑖 ), 𝑦(𝑡𝑖 ), 𝑧(𝑡𝑖 ), 𝐴0 )2 
(14) 

 

For simplicity, we denote 𝑋1𝑖 = 𝑥(𝑡𝑖 ), 𝑋2𝑖 = 𝑦(𝑡𝑖 ), 𝑋3𝑖 = 𝑧(𝑡𝑖 ), 𝑋4𝑖 = 𝑥(𝑡𝑖 )2, 𝑋5𝑖 = 𝑦(𝑡𝑖 )2, 𝑋6𝑖 = 𝑧(𝑡𝑖 )2, 𝑋7𝑖 = 
𝑥(𝑡𝑖 )𝑦(𝑡𝑖 ), 𝑋8𝑖 = 𝑦(𝑡𝑖 )𝑧(𝑡𝑖 ), 𝑋9𝑖 = 𝑧(𝑡𝑖 )𝑥(𝑡𝑖 ), 𝑖 = 1,2, … . . . , 𝑁 − 1, where N is the number of sample studied. 

Similar to the procedure of estimating the multivariate regression by the method of least squares, we can obtain 
the least squares estimator of the model as: 

𝐴⌃0  = (𝑋𝑇𝑋)−1(𝑋𝑇𝑌), (15) 

where 

 

and 𝑌 = (𝑌1 , 𝑌2 , … . . , 𝑌𝑁−1 )𝑇. The subscript 𝑇 indicates the transportation of matrix and vector. 

We consider the first regression equation and estimate the parameters (𝑞1, 𝐴1). The corresponding least squares 

estimation is subjected to: 
 

(𝑞 ,  𝐴⌃) = arg min 𝑆𝑆𝑅 (𝑞  , 𝐴  ) = arg min ∑𝑁−1(
𝑥(𝑡𝑛 +1)−𝑥(𝑡𝑛 ) 

𝛤(1 + 𝑞  ) − 𝑓 (𝑥(𝑡 ), 𝑦(𝑡 ), 𝑧(𝑡 ), 𝐴 ))2 = 

1 1 1 1 𝑛=1 (𝑡𝑛 +1−𝑡𝑛 )
𝑞 1 1 1 𝑛 𝑛 𝑛 1 

arg min (𝛤(1 + 𝑞 )(𝑡 − 𝑡 )1−𝑞1 )2 × ∑𝑁−1   𝑥(𝑡𝑛 +1)−𝑥(𝑡𝑛 ) 
− 𝑓 (𝑥(𝑡 ), 𝑦(𝑡 ), 𝑧(𝑡 ), 𝐴′ ))2, (17) 

1 𝑛+1 𝑛 𝑛=1 ( (𝑡 
 

𝑛 +1 −𝑡𝑛 ) 1 𝑛 𝑛 𝑛 1 

 

where   𝐴′   = 
(𝑡𝑛 +1−𝑡𝑛 )

𝑞 1−1𝐴1
 (18) 

1 𝛤(1+𝑞1) 

According to the evaluation result with 𝑞1  = 1, the minimum of the second product part implies that 𝐴′  = 𝐴⌃. 
1 0 

Hence, 

𝑞1  = arg min  {𝛤(𝑞1  + 1)(𝑡𝑛 +1  − 𝑡𝑛 )1−𝑞1 }, 𝐴′  = 𝐴⌃0, (19) 

and the minimum of 𝑆𝑆𝑅 (𝑞1, 𝐴1) can be obtained as: 

𝐴⌃1  = 𝛤(𝑞1  + 1)(𝑡𝑛 +1  − 𝑡𝑛 )1−𝑞1 (𝑋𝑇𝑋)−1(𝑋𝑇𝑌), (20) 

𝑞1  = arg min  {𝛤(𝑞1  + 1)(𝑡𝑛 +1  − 𝑡𝑛 )1−𝑞1 } (21) 
 

Equations (20)-(21) are the least squares estimation of 𝑞1 and 𝐴1 in the first regression equation of system (11), 

respectively. It is easy to find that the estimator of 𝑞1is not related to the sample observations, and can be computed 

by numerically. Using the same technique, we can deal with 𝑞2 and 𝑞3 in system (11) and obtain the optimal 



 

 

estimators of 𝑞2 and 𝑞3 . In the next section, the dynamics of the new model and prediction results based on the 

macroeconomic data of India is considered. 



 

 

EMPIRICAL RESULTS OF DISCRETE FINANCIAL SYSTEM: EVIDENCE FROM INDIA 
In this section, we present the study of discrete financial system based on the macroeconomic data of India. 

 

Data Description 

In financial model (11), the nonlinear dynamic behaviours of interest rate, investment demand and inflation are 

studied. This work chooses six-month London interbank offered rate (LIBOR) data to reflect interest rate change 

in India. The total investment percent of GDP is used to measure the investment demand. Average consumer 

prices percent change rate will be used to reflect the inflation. The annual data starts from year 1981 to 2015. 

The data about LIBOR, investment percent of GDP, and average consumer prices percent rate are obtained from 

EconStats which is organized by IMF. 

 

Empirical Results 

The optimal fractional orders 𝑞𝑖 = 1,2,3 with different step sizes ∆𝑡 = 1, 0.9, 0.8, 0.7,0.6 are performed in Table 

2. We do not consider the case of ∆𝑡 < 0.5 because of the fact that the fractional order decreases and approaches 

to zero, which reduces this present model to be a linear one but not the fractional financial system. 
 

𝑌𝑖  = 7.456 − 1.379𝑥𝑡  + 0.343𝑦𝑡  − 2.781𝑧𝑡  + 0.02𝑥2 + 0.005𝑦2 + 0.155𝑧2 + 0.066𝑥𝑡 𝑦𝑡  − 0.025𝑦𝑡 𝑧𝑡  + 

0.064𝑧𝑡 𝑥𝑡 , 
𝑡 𝑡 𝑡 

𝑌𝑖  = 7.456 − 1.379𝑥𝑡  + 0.343𝑦𝑡  − 2.781𝑧𝑡  + 0.02𝑥2 + 0.005𝑦2 + 0.155𝑧2 + 0.066𝑥𝑡 𝑦𝑡  − 0.025𝑦𝑡 𝑧𝑡  + 

0.064𝑧𝑡 𝑥𝑡 , 
𝑡 𝑡 𝑡 

𝑌𝑖  = 7.456 − 1.379𝑥𝑡  + 0.343𝑦𝑡  − 2.781𝑧𝑡  + 0.02𝑥2 + 0.005𝑦2 + 0.155𝑧2 + 0.066𝑥𝑡 𝑦𝑡  − 0.025𝑦𝑡 𝑧𝑡  + 

0.064𝑧𝑡 𝑥𝑡 , 
𝑡 𝑡 𝑡 

 

Table 2: Optimal fractional order 𝒒 
∆𝑡 1 0.9 0.8 0.7 0.6 0.5 

Extended 

Solver Steps 

/ Solver 

Iteration 

2/18 2/17 2/18 2/14 2/16 2/12 

𝑞𝑖 0.4616321 0.3579855 0.2536069 0.1482567 0.04157812 0 

𝑊 0.8856032 0.8321360 0.7667172 0.6890221 0.5991806 0.5 

Note: When∆𝑡 ≤ 0.5, 𝑞̂𝑖  ≤ 0; thus the case of ∆𝑡 ≤ 0.5 is not to be considered and 𝑊 = 𝛤(𝑞1 + 
1)∆𝑡1−𝑞1. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

Table 3: The first equation in () under the several time steps of dicretization 

∆𝑡 

Parameters: 

Coefficients 

of the 

variables 

1 0.9 0.8 0.7 0.6 1 

  𝑞𝑖   

0.4616321 0.3579855 0.2536069 0.1482567 0.04157812 1 

𝑐 6.603 (0.617) 6.204 
(0.617) 

5.716 
(0.617) 

5.137 
(0.617) 

4.467 
(0.617) 

7.456 
(0.617) 

𝑥𝑡 -1.221 -1.147 -1.057 -0.950 -0.826 -1.379 

(0.183) (0.183) (0.183) (0.183) (0.183) (0.183) 

𝑦𝑡 0.303 (0.605) 0.285 0.263 0.236 0.205 0.343 
 (0.605) (0.605) (0.605) (0.605) (0.605) 

𝑧𝑡 -2.463 -2.314 - -1.916 -1.666 -2.781 

(0.472) (0.472) 2.132(0.472) (0.472) (0.472) (0.472) 

𝑥2 0.018 (0.043) 0.017 
(0.043) 

0.016 
(0.043) 

0.014 
(0.043) 

0.012 
(0.043) 

0.02 (0.043) 

𝑦2 0.005 (0.867) 0.004 
(0.867) 

0.004 
(0.867) 

0.004 
(0.867) 

0.003 
(0.867) 

0.005 
(0.867) 

𝑧2 0.137 (0.511) 0.129 
(0.511) 

0.119 
(0.511) 

0.107 
(0.511) 

0.093 
(0.511) 

0.155 
(0.511) 

𝑥𝑡 
𝑦𝑡 

0.058 (0.156) 0.055 

(0.156) 

0.051 

(0.156) 

0.045 

(0.156) 

0.039 

(0.156) 

0.066 

(0.156) 
𝑦𝑡 
𝑧𝑡 

-0.022 

(0.699) 

-0.021 

(0.699) 

-0.019 

(0.699) 

-0.017 

(0.699) 

-0.015 

(0.699) 

-0.025 

(0.699) 

𝑧𝑡 
𝑥𝑡 

0.056 (0.584) 0.053 
(0.584) 

0.049 
(0.584) 

0.044 
(0.584) 

0.038 
(0.584) 

0.064 
(0.584) 

𝑅
2 

0.681 0.681 0.681 0.681 0.681 0.681 

𝑆𝑆
𝑅 

1393.396 1230.226 1044.399 843.456 637.840 1776.627 

𝑃𝑟
𝑜𝑏
(𝐹
) 

0.000 0.000 0.000 0.000 0.000 0.000 

 Note. Bracketed value denotes the statistical significance at the 5% levels. 𝑅2 is the coefficient of 

determination, 𝑆𝑆𝑅 is the sum of squared residuals, 𝑃𝑟𝑜𝑏(𝐹) is the 𝑃 value of 𝐹- statistic. 

 
 
 



 

 

 

 
  Table 4: The first equation in () under the several time steps of dicretization  

∆𝑡 

 
1 0.9 0.8 0.7 0.6 1 

Parameters: 
Coefficients 

of the 

Variables 

  𝑞𝑖   

0.4616321 0.3579855 0.2536069 0.1482567 0.04157812 1 

𝑐 5.212 (0.632) 4.897 
(0.632) 

4.512 
(0.632) 

4.055 
(0.632) 

3.526 
(0.632) 

5.885 
(0.632) 

𝑥𝑡 0.432 (0.561) 0.406 
(0.561) 

0.374 
(0.561) 

0.336 
(0.561) 

0.292 
(0.561) 

0.488 
(0.561) 

𝑦𝑡 -0.689 
(0.162) 

-0.647 
(0.162) 

-0.596 
(0.162) 

-0.536 
(0.162) 

-0.466 
(0.162) 

-0.778 
(0.162) 

𝑧𝑡 -0.778 
(0.782) 

-0.731 
(0.782) 

-0.674 
(0.782) 

-0.605 
(0.782) 

-0.526 
(0.782) 

-0.879 
(0.782) 

𝑥2 
𝑡 

-0.005 
(0.446) 

-0.005 
0.446) 

-0.005 
0.446) 

-0.004 
0.446) 

-0.004 
0.446) 

-0.006 
(0.446) 

𝑦2 
𝑡 

0.018 (0.437) 0.017 
(0.437) 

0.015 
(0.437) 

0.014 
(0.437) 

0.012 
(0.437) 

0.02 (0.437) 

𝑧2 
𝑡 

0.025 (0.886) 0.023 
(0.886) 

0.021 
(0.886) 

0.019 
(0.886) 

0.017 
(0.886) 

0.028 
(0.886) 

𝑥𝑡 𝑦𝑡 -0.019 
(0.562) 

-0.018 
(0.562) 

-0.017 
(0.562) 

-0.015 
(0.562) 

-0.013 
(0.562) 

-0.022 
(0.562) 

𝑦𝑡 𝑧𝑡 -0.046 (0.33) -0.043 (0.33) -0.040 (0.33) -0.036 (0.33) -0.031 (0.33) -0.052 (0.33) 

𝑧𝑡 𝑥𝑡 -0.063 
(0.461) 

-0.059 
(0.461) 

-0.054 
(0.461) 

-0.049 
(0.461) 

-0.042 
(0.461) 

-0.071 
(0.461) 

𝑅2 0.618 0.618 0.618 0.618 0.618 0.618 

𝑆𝑆𝑅 944.441 833.845 707.892 571.693 432.327 1204.194 

𝑃𝑟𝑜𝑏(𝐹) 0.000 0.000 0.000 0.000 0.000 0.000 

Note. Bracketed value denotes the statistical significance at the 5% levels. 𝑅2 is the coefficient of 

determination, 𝑆𝑆𝑅 is the sum of squared residuals, 𝑃𝑟𝑜𝑏(𝐹) is the 𝑃 value of 𝐹- statistic. 



 

 

 

  Table 5: The first equation in () under the several time steps of dicretization  

∆𝑡 

 
1 0.9 0.8 0.7 0.6 1 

Parameters: 

Coefficients 

of the 
Variables 

  𝑞𝑖   

0.4616321 0.3579855 0.2536069 0.1482567 0.04157812 1 

𝑐 -2.93 (0.46) -2.753 (0.46) -2.537 (0.46) -2.28 (0.46) -1.983 (0.46) -3.309 (0.46) 

𝑥𝑡 -0.255 -0.239 -0.22 (0.349) -0.198 -0.172 -0.287 

(0.349) (0.349)  (0.349) (0.349) (0.349) 

𝑦𝑡 -0.012 -0.011 -0.01 (0.945) -0.009 -0.008 -0.014 
(0.945) (0.945)  (0.945) (0.945) (0.945) 

𝑧𝑡 1.413 (0.174) 1.328 1.223 1.099 0.956 1.595 
 (0.174) (0.174) (0.174) (0.174) (0.174) 

𝑥2 0.003 (0.292) 0.003 
(0.292) 

0.002 
(0.292) 

0.002 
(0.292) 

0.002 
(0.292) 

0.003 
(0.292) 

𝑦2 -0.003 
(0.671) 

-0.003 
(0.671) 

-0.003 
(0.671) 

-0.003 
(0.671) 

-0.002 
(0.671) 

-0.004 
(0.671) 

𝑧2 -0.12 (0.063) -0.113 
(0.063) 

-0.104 
(0.063) 

-0.093 
(0.063) 

-0.081 
(0.063) 

-0.135 
(0.063) 

𝑥𝑡 𝑦𝑡 0.001 (0.967) 0.000 0.000 0.000 0.000 0.001 
 (0.967) (0.967) (0.967) (0.967) (0.967) 

𝑦𝑡 𝑧𝑡 0.008 (0.644) 0.007 0.007 0.006 0.005 0.009 
 (0.644) (0.644) (0.644) (0.644) (0.644) 

𝑧𝑡 𝑥𝑡 0.032 (0.311) 0.03 (0.311) 0.027 0.025 0.021 0.036 
  (0.311) (0.311) (0.311) (0.311) 

𝑅2 0.546 0.546 0.546 0.546 0.546 0.546 

𝑆𝑆𝑅 124.866 110.244 93.592 75.585 57.159 159.209 

𝑃𝑟𝑜𝑏(𝐹) 0.011 0.011 0.011 0.011 0.011 0.011 

Note. Bracketed value denotes the statistical significance at the 10% levels. 𝑅2 is the coefficient of 

determination, 𝑆𝑆𝑅 is the sum of squared residuals, 𝑃𝑟𝑜𝑏(𝐹) is the 𝑃 value of 𝐹- statistic. 

 

Table 3-5 show the results about the estimated coefficients, coefficient of determination, sum of residuals, and 𝑃 
statistical test values in empirical model equations for various discretization time intervals. Estimated coefficients 

and other values are also provided under the integer-order Chen system for comparison. 

 

Table 3 indicates that the coefficient of determination (R2) for the nine independent variables is 0.681, indicating 

that this set of factors adequately explains 68.1% of the variance in interest rates. It's worth noting that F = 0.0001. 

This means there is a 99.999% chance that the model is correct. For each independent variable, we also have its t 

test result, which indicates its significance at the 95% level of confidence. The sole statistically significant variable 

in this table is x2, the dynamic independent variable, with a value of 0.043 (less than 0.05). The remaining eight 

dynamic independent variables do not add up to statistical significance on their own. In conclusion, the empirical 

equation for the interest rate comprises a structure of components whose corresponding coefficient estimates are 

significant at the 5% level. 

 

x, y, z, x2, y2, z2, xy, yz, zx, constant term, and does not rely on the amount of the temporal discretization. Since 

qi estimate in (21) is independent of sample data, the result makes sense. Nonlinear financial models with a 

changing interest rate often have a larger sum of squares owing to residuals if the order of the model is integer 

rather than fractional. Therefore, the fractional nonlinear systems provide deeper insights into the dynamic 

behavior of the Indian financial sector. 

 

Table 4 demonstrates that the nine independent factors account for 61.8% of the variance in investment, as 

measured by the R2 value of 0.618. It's worth noting that F = 0.0001. This means there is a 99.999% chance that 

the model is correct. In addition, we have the significance level of the test for each independent variable, expressed 

as a test value with a 95% degree of confidence. This table shows that none of the nine dynamic independent 

variables are statistically significant when considered separately. Finally, the structure of terms at which 



 

 

corresponding coefficients computed are significant at the 5% level in the empirical equation regarding investment 

rate contains terms x, y, z, x2, y2, z2, xy, yz, zx, constant term, and is insensitive to the time step size discretization. 

Since qi estimate in (21) is independent of sample data, the result makes sense.Integer-order nonlinear financial 

models of dynamic investments have a larger sum of squares owing to residual than their fractional-order 

counterparts. Therefore, the fractional nonlinear systems provide deeper insights into the dynamic behavior of the 

Indian financial sector. 

 

Table 5 demonstrates that the nine independent variables account for 54.6% of the variance in inflation, as 

measured by the R2 value of 0.546. It's worth noting that F = 0.0001. This means there is a 99.999% chance that 

the model is correct. Additionally, we have the t test result for the significance of independent variables at the 

90% confidence level. The only statistically significant value in this table is 0.063 for the dynamic independent 

variable z2, which is less than 0.1 (significant). The remaining eight dynamic independent variables do not add 

up to statistical significance on their own. Finally, the structure of terms at which corresponding coefficients 

estimated are significant at the 5% level in the inflation empirical equation includes terms x, y, z, x2, y2, z2, xy, 

yz, zx, constant term, and is insensitive to the time step size discretization. Since qi estimate in (21) is independent 

of sample data, the result makes sense.In the integer-order nonlinear financial model of dynamic inflation, the 

sum of squares owing to residual is larger than in the fractional-order models. Therefore, the fractional nonlinear 

systems provide deeper insights into the dynamic behavior of the Indian financial sector. 

 

In Figures 1-3, we see the interest rate, investment, and inflation data as well as the data projected by the empirical 

model for t = 0.6. The black line in Figure 1 cuts through the bulk of the circle. We find that the model's empirical 

interest rate equation well describes both the estimated data (shown by the circles) and the actual data (represented 

by the black line). The black line in Figure 2 virtually touches all of the circles. Ideal empirical equation fitting of 

real-world investment data is represented by the property of the figure. Figure 3 shows a brief portion of time at 

the beginning of the era with a handful of circle notations off the black line. Based on the facts shown in Figure 

3, it seems that the empirical equation about inflation is a good match. Figures 1-3 in particular provide strong 

evidence that the estimated empirical model follows the paper's stated approach and faithfully represents the 

underlying data. 

 

Multistep interest rate, investment, and inflation predictions for (t = 1 and q = 1), (t = 1 and q = 0.9), (t = 1 and q 

= 0.6), and (t = 1 and q = 1) are displayed in Figures 4 and 5, respectively, to evaluate the efficacy of the conclusion 

regarding the prediction of the empirical model. Figure 4 shows that the predicted interest rate is fairly close to 

the actual interest rate. It implies that in all six scenarios of fractional order and integer first order, interest rate 

prediction is relevant. Figure 5 shows that the estimates are within a small margin of the actual expenditure. It 

indicates that in all six scenarios of fractional order and integer first order, investment forecast is significant. 

Figure 6 shows that the forecasts are quite consistent with the observed inflation. In all six scenarios, including 

integer first order, it implies that the inflation forecast is meaningful. Based on these findings, it seems that 

meaningful estimate of an empirical model of interest rates, investments, and inflation may be achieved using 

fractional-order optimization with a reasonable t. 

  

 

 



 

 

 

Figure 1: The actual interest rate versus estimated interest rate 

 
 

Figure 2: The actual investment versus estimated investment 



 

 

 

 

 

Figure 3: The actual inflation versus estimated inflation 

 
 

Figure 4: Fractional-order predictions of interest rate on empirical model 

 
Figure 5: Fractional-order predictions of investment on empirical model 



 

 

 

 

 

Figure 6: Fractional-order predictions of inflation on empirical model 

 

CONCLUSIONS 
Recent reports have suggested a fractional model of finance as an alternative to integer-order models. In this 

research, we use Jumarie's fractional-order derivative to present a novel nonlinear dynamic financial econometric 

model. In order to create the discrete financial model that corresponds to Jumarie's derivative, the limit operation 

must be removed. This model solves the issues that other nonlinear financial models in the literature cannot, and 

it gives a workable method for representing the real macroeconomic data of a single region using a nonlinear 

model. Empirical study confirms the current model's reasonableness. 

 

We assess the model's settings based on information about India's economy. India's data is then converted to the 

best fractional order possible. Observations from the empirical research show that the fractional order does, in 

fact, affect the dynamic behavior of financial systems. This innovative fractional financial model may be used to 

anticipate and shed light on the dynamic behavior of India's financial systems in the years to come, thanks to its 

optimum fractional order. 

 

. 
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