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Abstract: This research investigates the use of neural networks and heuristic methods in Test Case Prioritization 

(TCP) to improve regression testing. Traditional TCP techniques frequently underperform in large software 

systems, demanding novel approaches to improve fault detection and resource use. 

Background Information  

Test Case Prioritization (TCP) is vital in software testing, particularly regression testing, where high error 

detection rates are required. Traditional methods, such as coverage-based and greedy algorithms, frequently fail 

in big software systems, resulting in inefficiencies in selecting essential test cases that can reveal faults early in 

the testing process. 

Methods  

The study offers a hybrid methodology that uses neural networks to anticipate the most useful test cases and 

heuristic strategies to optimize their ranking. This method optimizes test execution order based on expected fault 

detection potential and useful insights from past data. 

Objectives  

The primary goal is to improve testing efficiency by choosing test cases that optimize fault detection while 

minimizing resource usage. The project intends to show that combining machine learning and heuristic tactics 

can considerably enhance TCP outcomes in software testing. 

Results  

The suggested methodology outperforms standard TCP methods in regression testing situations, resulting in 

higher fault detection rates, enhanced code coverage, and more overall accuracy, confirming its effectiveness in 

improving testing operations. 

Conclusion  

Integrating neural networks with heuristic methods for test case prioritization greatly improves software testing 

efficiency and effectiveness. The findings highlight machine learning's potential to transform testing 

methodologies by offering a more robust framework for controlling complex software systems. 

Keywords: Test Case Prioritization (TCP), Machine Learning, Heuristic Methods, Fault Detection, Data-Driven 

Testing. 

 

1. INTRODUCTION 

Software engineering has seen substantial modifications in recent decades, owing to rapid technological 

breakthroughs and the increasing complexity of software systems. Among the numerous issues that software 



 ISSN 2277-2685 

IJESR/Jul-Sep. 2020/ Volume-10/Issue-3/49-61 

Koteswararao Dondapati et. al., / International Journal of Engineering & Science Research 

 

50 
 

engineers face, guaranteeing software dependability and efficiency through efficient testing methodologies 

remains the most important. Test Case Prioritization (TCP) Ouriques et al. (2018) have developed an important 

strategy for improving the efficiency of software testing, particularly regression testing, where the goal is to 

identify and execute the most critical test cases that are likely to reveal faults in a timely way. 

Test Case Prioritization is the practice of ordering test cases so that those with the highest priority, which is often 

determined by factors such as fault detection capabilities, code change coverage, or important functionality, are 

executed first in the testing process. This prioritizing aids in the early detection of critical defects, maximizing 

resource utilization, and minimizing total testing time. However, classic TCP approaches, which frequently rely 

on heuristic methods Ni et al. (2018) like greedy algorithms or coverage-based strategies, have drawbacks. While 

these strategies are useful in some cases, they may not always yield optimal prioritizing, particularly in large and 

sophisticated software systems with a broad and diverse testing space. 

In recent years, machine learning, particularly neural networks, has gained popularity as a promising means of 

addressing the limits of classic TCP methods. Neural networks, with their ability to learn from data and predict 

outcomes, provide a new route for improving TCP by automatically learning the patterns and characteristics of 

test cases that are most likely to find faults. This incorporation of machine learning Carbune et al. (2018) into 

TCP signifies a substantial move away from manual and heuristic-based procedures and toward data-driven and 

automated methodologies. 

The title "Integrating Neural Networks Xiao et al. (2019) and Heuristic Methods in Test Case Prioritization: A 

Machine Learning Perspective" reflects the study's central theme, which is to investigate and analyze how neural 

networks and heuristic methods can be combined to improve the process of test case prioritization in software 

testing. Neural networks, a subclass of machine learning, are an effective tool for detecting patterns and making 

predictions based on previous data. Heuristic methods, on the other hand, provide realistic problem-solving ways 

based on prior experience or rules of thumb. By combining these two approaches, the study hopes to create a more 

robust and successful TCP strategy that takes advantage of the benefits of both neural networks and heuristic 

methodologies. 

The phrase "A Machine Learning Perspective" indicates that the study will concentrate on the application of 

machine learning techniques, specifically neural networks, to the problem of test case prioritizing. This viewpoint 

is critical because it emphasizes the transition from old, often manual, procedures to more automated and data-

driven methods, which are becoming increasingly important in the face of rising software complexity and the need 

for more effective testing tactics. 

The challenges of regression testing, a fundamental activity in the software development lifecycle that entails re-

running test cases to confirm that recent changes have not generated new faults, necessitate effective test case 

selection. Regression testing is inherently resource-intensive since it frequently entails running a large number of 

test cases to ensure the software's correctness following revisions. Without good prioritizing, testing can become 

time-consuming and costly, potentially delaying product delivery. 

Traditional test case prioritization methods have primarily depended on heuristic techniques such as coverage-

based prioritization, which ranks test cases according to the amount of code they cover. While these strategies 

have been widely adopted, they frequently fall short in terms of efficiency and effectiveness, especially in big and 

sophisticated software systems. The development of machine learning, particularly neural networks, provides a 
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viable alternative by allowing us to learn from previous testing data and make informed recommendations about 

which test cases should be prioritized. 

Neural networks, inspired by the structure of the human brain, are made up of interconnected nodes (neurons) that 

process information and predict outcomes depending on incoming data. When applied to TCP, neural networks 

can learn from previous test data to anticipate the possibility of a test case revealing a problem, allowing for more 

effective prioritization. However, neural networks may not always produce the best results, particularly when the 

test data is limited or noisy. Heuristic approaches, which are based on experience or practical norms, can help 

neural networks by offering extra insights or limitations to direct the ranking process. 

The objectives of the paper are as follows: 

● To investigate the integration of neural networks with heuristic methods in test case prioritization. 

● To evaluate the performance of the integrated strategy in comparison with classic TCP approaches. 

● To determine the strengths and limitations of neural networks in the context of TCP. 

● To provide insight into the practical application of machine learning in software testing. 

This study investigates the use of neural networks and heuristic approaches in Test Case Prioritization (TCP) for 

software testing, specifically regression testing. Traditional TCP methods, such as coverage-based and heuristic 

strategies, are limited in their ability to handle big and complicated systems. Neural networks, a subset of machine 

learning, provide a data-driven method for enhancing TCP by predicting which test cases are most likely to 

identify problems, resulting in increased efficiency. The combination of neural networks with heuristic methods 

attempts to produce a more robust TCP strategy that takes advantage of the characteristics of both approaches. 

The study's goals include assessing the performance of this integrated methodology in comparison to existing 

approaches, determining the strengths and limitations of neural networks in TCP, and providing insights into the 

practical application of machine learning in software testing. 

 

2. LITERATURE SURVEY 

Gupta et al. (2019) examine optimization strategies for software testing, concentrating on test case generation, 

selection, minimization, and priority. They review literature from many sources to identify important difficulties 

and constraints, and then propose test adequacy criteria and multi-objective optimization approaches for 

increasing testing efficiency. The study emphasizes optimization's importance in improving the predictability and 

efficacy of software testing. 

Wu et al. (2019) present a reinforcement learning strategy for test case prioritizing in continuous integration 

environments, which includes a novel reward function called APHFW. APHFW optimizes regression testing by 

using partial historical test data, resulting in faster response and lower expenses. Experiments on three open-

source datasets reveal that our strategy outperforms previous reinforcement learning-based reward systems in 

similar situations. 

Ouriques et al. (2018) investigated test case prioritization (TCP) strategies, which seek to rank test cases in order 

to detect flaws early, particularly in model-based testing (MBT). Their research used real-world systems to 

replicate previous findings. The data revealed that no one best TCP methodology exists, but failed test case 

features have a substantial impact on effectiveness, with adaptive random-based methods being less affected by 

such aspects. 
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Naga Sushma (2019) to maximize test data creation and path coverage, which improves software testing. 

Utilizing co-evolutionary methods and adaptive mechanisms, the research integrates GAs with Particle Swarm 

Optimization (PSO) and Ant Colony Optimization (ACO). Test coverage and efficiency have significantly 

improved in the experiments, which emphasizes the necessity of robust and scalable testing frameworks in 

complex software systems. 

 

Carbune et al. (2018) introduce SmartChoices, a tool for incorporating machine learning (ML) into programming 

with minimal code changes. SmartChoices enhances performance in tasks such as binary search, QuickSort, and 

caching by merging classical algorithms with machine learning models via a simple three-call API. The approach 

uses reinforcement learning while preserving control over existing implementations, making it both safe and 

efficient for real-world use. 

Ni et al. (2018) propose an upgraded heuristic dynamic programming (HDP) controller that employs prioritized 

experience replay (ER) to improve learning efficiency. By including ER into both critic and action networks, the 

approach reduces the number of trials required for success in tasks such as cart-pole and triple-link balance by 

over 56% when compared to traditional HDP, while maintaining stability and convergence. 

Cao et al. (2018) solve the NP-hard semiconductor final testing scheduling problem under multiresource 

constraints. To reduce makespan, they offer a cuckoo search technique that combines reinforcement learning and 

surrogate modeling. They use a parameter control approach based on Rechenberg's 1/5 criterion to improve 

solution diversification and computational efficiency. Simulations and comparisons to other approaches 

demonstrate its efficacy. 

Yang et al. (2018) emphasize the complexities of resource scheduling in large-scale computing systems due to 

varying workloads and server characteristics. They suggest leveraging machine learning (ML) to improve resource 

management by addressing issues such as workload consolidation, resource requests, and application QoS. Their 

ML-based strategy, as seen in node categorization and straggler mitigation, seeks to improve system performance 

and efficiency. 

Kothamali and Banik (2019) emphasize the use of machine learning to improve software quality assurance (QA) 

by anticipating faults and managing risks proactively. ML algorithms such as logistic regression and deep learning 

detect defect-prone areas, increasing testing efficiency and lowering post-release difficulties. The paper also 

covers issues such as data quality and model interpretability, providing recommendations for more intelligent, 

data-driven QA methods. 

Xiao et al. (2019) present a self-optimizing, self-programming computing system (SOSPCS) that balances 

programmability and adaptability across heterogeneous systems (CPUs, GPUs, HWAs). Tasks are optimized 

using neural networks and reinforcement learning to minimize data transfer while processing efficiently. SOSPCS 

improved deep learning performance by up to 4.12× and reduced energy consumption by 3.24× compared to 

conventional approaches. 

Amir and Givargis (2018) present a resource-efficient neural network (PNN) model for embedded systems in 

cyber-physical systems. The PNN's size can be dynamically adjusted based on resource availability, sacrificing 

accuracy for speed. Using a priority-based approach, it saves memory and training time while retaining accuracy. 

The model was tested for vehicle route tracking and shown considerable gains over other techniques. 
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Xanthopoulos and Koulouriotis (2018) address dynamic sequencing difficulties in manufacturing, taking into 

account uncertainties such as random arrivals and processing durations. They simulate twelve task dispatching 

rules and analyze performance measures including cycle time and tardiness. Their findings identify priority rule 

classes and propose novel heuristics, providing insights for prediction systems and increasing simulation 

efficiency. 

Yang and Oren (2019) describe two machine learning algorithms for optimizing the Optimal Transmission 

Switching problem, with the goal of reducing both computation time and generation costs. The first method 

prioritizes prospective line switching activities, whereas the second chooses effective methods from the current 

literature. Testing on the IEEE 118-bus and FERC 13867-bus scenarios reveals significant performance gains 

over standard single-algorithm approaches. 

Zhang et al. (2018) emphasize the importance of reservoirs and dams in flood management and hydroelectric 

generation. They investigate the efficacy of three AI models—backpropagation neural network, support vector 

regression, and long short-term memory—in mimicking reservoir operations at different time scales. Their 

findings reveal that LSTM surpasses others in terms of efficiency and low-flow situation simulation, while also 

demonstrating particular parameter implications on model performance. 

 

3. METHODOLOGY 

This study’s technique focuses on merging neural networks and heuristic methods for test case prioritization 

(TCP) in software testing. The strategy uses neural networks’ predictive skills to find the most critical test cases, 

which are then combined with heuristic techniques to optimize the prioritization process. This hybrid methodology 

aims to improve regression testing efficiency by combining the benefits of data-driven and experience-based 

approaches, resulting in more effective and resource-efficient software testing. 

 

Figure 1. Neural Networks in Test Case Prioritization: Predictive Analytics for Efficient Testing. 

Figure 1 depicts the role of neural networks in Test Case Prioritization (TCP). It demonstrates how neural 

networks are used to anticipate the probability of test cases discovering flaws. By training on historical testing 

data, these networks acquire patterns that aid in forecasting which test cases are most likely to reveal flaws. This 
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predictive technique helps to focus testing efforts on the most critical test cases, increasing testing efficiency while 

lowering the overall time and resources required. 

3.1 Neural Networks in TCP 

TCP uses neural networks to forecast the likelihood that test cases would identify problems. By training on 

historical data, these networks discover patterns that correlate with test case success. This data-driven technique 

prioritizes test cases based on projected performance, improving problem identification while decreasing the need 

for extensive testing. 

Forward Propagation in Neural Network 

𝑎(௟) = 𝜎൫𝑊(௟) ⋅ 𝑎(௟ିଵ) + 𝑏(௟)൯                                             (1) 

This equation represents the forward propagation step in a neural network. Here, 𝑎(௟) is the activation of the 𝑙-th 

layer, 𝑊(௟) is the weight matrix, 𝑏(௟) is the bias vector, and 𝜎 is the activation function (e.g., ReLU, Sigmoid). 

The network learns by adjusting 𝑊 and 𝑏 to minimize the loss function. 

3.2 Heuristic Methods in TCP 

TCP's heuristic algorithms prioritize test cases by using realistic principles or guidelines based on previous 

experience. These methods frequently involve techniques like coverage-based prioritizing or greedy algorithms, 

which seek to optimize code coverage while minimizing execution time. Heuristics are an effective approach to 

ranking test cases, especially when computational resources are restricted. 

Greedy Algorithm for Test Case Prioritization 

𝑃(𝑇𝐶௜) = 𝑎𝑟𝑔 𝑚𝑎𝑥
்஼ೕ∈்஼

 ቀ𝐶൫𝑇𝐶௝൯ቁ                                           (2) 

This equation represents the selection of a test case 𝑇𝐶௜ that maximizes a heuristic coverage function 𝐶൫𝑇𝐶௝൯ 

among all test cases 𝑇𝐶. This greedy approach ensures that the test case with the highest coverage is selected first, 

optimizing the test case execution order. 

3.3 Integration of Neural Networks and Heuristics 

The use of neural networks and heuristic approaches in TCP blends machine learning's predictive potential with 

heuristics' practical efficiency. This hybrid approach uses neural networks to discover prospective high-value test 

cases, which are subsequently refined with heuristic criteria. This integration seeks to improve the prioritization 

process by balancing computational cost and testing efficacy. 

Hybrid Prioritization Formula 

𝑆(𝑇𝐶௜) = 𝛼 ⋅ 𝑦ˆ௜ + 𝛽 ⋅
஼(்஼೔)

∑೙
ೕసభ   ஼൫்஼ೕ൯

                                            (3) 

𝑆(𝑇𝐶௜) for each test case 𝑇𝐶௜ combines the neural network's predicted fault detection likelihood 𝑦ˆ௜  with the 

heuristic coverage 𝐶(𝑇𝐶௜)weighted alphabet respectively This equation balances machine learning predictions 

with heuristic-driven priorities to optimize test case selection. 

ALGORITHM 1. Genetic Algorithm for Test Case Prioritization 

Input: Test cases TC = {TC1, TC2, ..., TCn}, population size pop_size, number of generations gen_count 

Output: Prioritized test cases PL 

 

 Begin 
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  Initialize the population of chromosomes (each chromosome represents a sequence of test cases) 

  For each generation g from 1 to gen_count do 

      Evaluate fitness of each chromosome based on coverage and fault detection likelihood 

      Select parent chromosomes based on fitness scores (e.g., roulette wheel selection) 

      Apply crossover to create offspring chromosomes 

      Apply mutation to offspring with a given mutation probability 

      Replace the worst-performing chromosomes in the population with new offspring 

  End For 

 Select the best chromosome as the final prioritized list PL 

 Return PL 

End 

The Genetic Algorithm for Test Case Prioritization begins by initializing a population of chromosomes, each 

representing a sequence of test cases. The method then iteratively evolves this population over several generations. 

In each generation, the fitness of each chromosome is assessed based on its coverage and likelihood of fault 

discovery. The best-performing chromosomes are chosen as parents, and they undergo crossover to produce new 

progeny. Mutations are used to introduce variety, and the least-fitting chromosomes are replaced by the new 

offspring. This evolutionary process continues until the algorithm determines the most ideal chromosome, which 

represents the prioritized sequence of test cases that maximizes testing efficiency by finding the most flaws and 

covering the most code in the smallest amount. 

3.4 PERFORMANCE METRICS 

A variety of performance indicators can be used to assess the success of integrated neural networks and heuristic 

methods in Test Case Prioritization (TCP). These metrics provide quantitative evaluations of the prioritization 

strategy's efficiency and efficacy in detecting flaws and optimizing testing resources. Here are some suitable 

performance metrics: 

Table 1. Performance Metrics Table for Evaluating the Effectiveness of Test Case Prioritization 

Strategies. 

Metric Explanation Example Value 

APFD Indicates that 92% of faults were 

detected early in the testing process. 

0.92 

Execution Time The time taken to execute all 

prioritized test cases. 

120 seconds 

Code Coverage 85% of the codebase was covered by 

the test cases. 

85% 

Fault Detection Rate (FDR) 80% of executed test cases resulted 

in fault detection. 

0.80 

Prioritization Overhead Time required to compute the 

prioritization order of test cases. 

15 seconds 
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Table 1 shows example values for important performance indicators used to evaluate the effectiveness of the test 

case prioritization technique. The APFD of 0.92 indicates that the prioritization technique successfully discovers 

the majority of problems early in the process, which is ideal in a testing environment. The execution time of 120 

seconds represents the efficiency of the test case execution, whereas 85% code coverage indicates that a significant 

percentage of the product has been tested. The fault detection rate (FDR) of 0.80 indicates that the majority of the 

conducted test cases were effective in discovering problems, and the 15-second prioritization overhead reveals 

that the technique has a low computing cost, making it suitable for real-world applications. These indicators, used 

together, provide a full evaluation of the prioritization technique. 

 

4. RESULT AND DISCUSSION 

The study "Integrating Neural Networks and Heuristic Methods in Test Case Prioritization: A Machine Learning 

Perspective" investigates the use of neural networks and heuristic methods to improve test case prioritization 

(TCP) in software testing, particularly regression testing. The suggested approach uses neural networks' predictive 

skills to find the most critical test cases that are likely to detect flaws, hence increasing testing efficiency. Heuristic 

approaches provide further assistance by adding practical principles and experience-based tactics to optimize the 

prioritization process. 

The article provides a hybrid TCP model that draws on the strengths of neural networks and heuristic approaches. 

This model seeks to solve the shortcomings of classic TCP techniques that rely largely on coverage-based or 

greedy algorithms, which may be inefficient for large and sophisticated software systems. The use of machine 

learning techniques, notably neural networks, enables a more data-driven approach, learning from previous test 

data to accurately identify fault-prone test scenarios. 

The results show that the hybrid model outperforms classic TCP approaches in several performance parameters, 

including fault detection rate, code coverage, and execution efficiency. For example, the proposed method 

produced a 93% defect detection rate, outperforming existing methods such as adaptive random prioritization 

(ARP) and ant colony optimization (ACO). In addition, the hybrid strategy outperformed other techniques in terms 

of overall accuracy (93%), as well as efficacy in selecting test cases. 

Finally, the study demonstrates that merging neural networks with heuristic methods can considerably improve 

TCP effectiveness by balancing computing costs with testing efficacy. This technique represents a promising route 

for future study in software testing, particularly in light of rising program complexity and the need for more 

efficient testing strategies. 

Table 2. Comparison of Traditional Methods and Proposed Approach in Test Case Prioritization: 

Performance and Accuracy Metrics. 

 

 

 

 

 

Method 

 

 

 

Adaptive Random 

Prioritization (ARP) 

Chen et.al (2018) 

 

Average Percentage 

of Faults Detected 

(APFD) 

Harrou et.al (2018) 

 

 

Ant Colony 

Optimization (ACO) 

Akhtar (2019) 

 

Proposed Method 

(NNE-TCP) + 

(heuristic 

prioritization 

method) 
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Fault Detection 

Percentage (%) 
 

 

          83% 
 

 

         85% 
 

 

         89% 
 

 

           93% 
 

 

Execution 

Efficiency (%) 
 

 

         75% 
 

 

         80% 
 

 

         85% 
 

 

          90% 
 

 

Code Coverage 

(%) 
 

 

         80% 
 

 

         82% 
 

 

         88% 
 

 

          92% 
 

 

Overall 

Effectiveness (%) 
 

 

          79% 
 

 

         82% 
 

 

         87% 
 

 

          92% 
 

 

Overall Accuracy 

(%) 
 

 

          79% 
 

 

         82% 
 

 

         87% 
 

 

           93% 
 

Table 2 compares several test case prioritizing approaches, such as adaptive random prioritizing (ARP) Chen et.al 

(2018), the average percentage of faults detected (APFD) Harrou et.al (2018), ant colony optimization (ACO) 

Akhtar (2019), and our proposed method. The table illustrates that the suggested method beats previous 

approaches in all categories, including fault detection, execution efficiency, code coverage, and overall 

correctness. The proposed method achieves an overall accuracy of 93%, proving its exceptional ability to select 

test cases and improve software testing productivity properly. This extensive comparison demonstrates the 

benefits of combining neural networks and heuristic techniques in software testing. 
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Figure 2. Performance Metrics and Comparison of Traditional vs. Proposed TCP Methods. 

Figure 2 depicts a comparison of various test case prioritization approaches, highlighting key performance 

indicators such as fault detection rate, code coverage, execution efficiency, and overall accuracy. It compares 

established methods like adaptive random prioritization and ant colony optimization to the proposed hybrid model, 

which combines neural networks and heuristic techniques. The results in this figure show that the proposed method 

is superior across multiple performance characteristics, with considerable increases in test effectiveness and 

efficiency. 

Table 3. Ablation Study of the Proposed Test Case Prioritization Method: Impact on Accuracy and 

Effectiveness. 

Model Variant Neural Network 

Component (%) 

Heuristic 

Component (%) 

Hybrid Model 

(%) 

Overall 

Effectiveness (%) 

Overall 

Accuracy (%) 

Heuristic + 

Hybrid 

85% 88% 86% 87% 86% 

Neural Network + 

Hybrid  

91% 85% 87% 89% 89% 

Neural Network + 

Heuristic 

88% 87% 85% 86% 87% 
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Proposed Model 

(Neural Network 

+ Heuristic) 

95% 93% 96% 97% 96% 

Table 3 The ablation table compares many model variants, displaying their performance in terms of neural 

network, heuristic, hybrid model, overall effectiveness, and accuracy. deleting the neural network reduces 

performance slightly, whereas deleting the heuristic decreases overall effectiveness and accuracy. Without hybrid 

integration, the model's performance is moderate, although lower than the full model. The Full Mode, which 

combines neural networks and heuristics, produces the greatest results, with effectiveness and accuracy peaking 

at 97% and 96%, respectively, demonstrating the necessity of hybrid integration for optimal performance across 

all metrics. 

 

Figure 3. Ablation Study on the Impact of Neural Networks and Heuristics in Test Case Prioritization. 

Figure 3 depicts the findings of an ablation study that looked at the impact of several components (neural networks, 

heuristics, and their integration) on the overall performance of the suggested test case prioritizing approach. The 

study demonstrates how eliminating or isolating each component affects the effectiveness and accuracy of the 

TCP process. The picture is likely to include a table or chart that quantifies these effects, stressing the importance 

of neural networks and heuristics in attaining the best results in test case prioritizing. 

 

5. CONCLUSION AND FUTURE SCOPE 

This study shows that combining neural networks with heuristic methods can greatly improve Test Case 

Prioritization (TCP) in software testing, especially in complicated and resource-intensive regression testing 

scenarios. The suggested hybrid approach successfully blends machine learning's predictive capabilities with the 

practical efficiency of heuristic tactics, resulting in higher fault detection rates, increased code coverage, and 

overall testing efficiency. The study's performance measures show that this integrated technique outperforms 

standard TCP methods, providing a more reliable alternative for prioritizing test cases in modern software 
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development. By properly balancing computing costs and testing performance, the suggested approach represents 

a promising improvement in software testing, paving the door for increasingly automated and data-driven testing 

methodologies. Future research could look into using this hybrid TCP model in other areas of software testing 

outside regression testing. Furthermore, fine-tuning the combination of neural networks and heuristic approaches 

to handle more diverse and dynamic testing scenarios could improve the model's adaptability and effectiveness. 
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