

ISSN 2277-2685

IJESR/June. 2022/ Vol-12/Issue-2/1-21

NAGAMALLI

et. al., / International Journal of Engineering & Science Research

1 3

DESIGN OF FIXED-WIDTH BOOTH MULTIPLIER USING DATA

SCALING METHOD FOR DSP COMPUTATIONS

A. NAGAMALLI
 1
, P. GNANA SAI LAKSHMAN

 2
, MUDDETI. SRIKANTH

 2
, BUDDABATHUNI. UMA SUPRAJA

 2
,

TALLURU. HARSHAVARDHAN
 2
, MANNEM. PRADEEP

 2

1
 Associate Professor, ECE department, PBR Visvodaya Institute Of Technology & Science, Kavali, Andhra Pradesh, India.

2
 UG students, ECE department, PBR Visvodaya Institute Of Technology & Science, Kavali, Andhra Pradesh, India.

ABSTRACT

Truncation errors lead to the adverse effects in obtaining the high-speed

performance with in the DSP. Computation circuits to overcome these issues Data Scaling

Technology (DST) is used. The difference between a truncated value and the actual value is

known as Truncation error. This truncation error can be reduced by doing repeated iteration

using iterative methods.

Data Scaling Technology (DST) is used in a low error Fixed –Width Booth

Multipler (FWBM) to reduce truncation in DSP circuits. The proposed DST architecture uses

the redundant bits of the multiplicand to more efficiently obtain bits for low FWBMs. More

specifically, a Data Scaling Technology (DST) for use in a low-error Fixed-Width Booth

Multiplier (FWBM) to reduce truncation errors. The proposed DST uses the redundant bits of

the multiplicand to more efficiently obtain bits low-error FWBMs. To reduce the truncated

partial products, which are used to estimate the compensation bias. At the cost of increased

computations in the FWBM. The accuracy of the FWBM can be improved by adding the

proposed DST circuit with in the architecture by reduced area overhead and enhanced

accuracy.

Expected results indicate that the use of the proposed DST increases the accuracy of

low error FWBMs with a small area overhead by estimating delay and speed. The

effectiveness of the proposed method is designed using Verilog HDL program in Xilinx 14.7

environment.

3

start

Design Entity

Logic Synthesis Pre layout Simulation

System Partitioning

Floor Planning Pre layout Simulation

Placement

Routing Circuit Extraction

1. INTRODUCTION:

The complexity of VLSI is being designed and used today makes the manual

approach to design impractical. Design automation is the order of the day. With the rapid

technological developments in the last two decades, the status of VLSI technology is

characterized by the following

A steady increase in the size and hence the functionality of the ICs:

• A steady reduction in feature size and hence increase in the speed of operation as well as

gate or transistor density.

• A steady improvement in the predictability of circuit behavior.

• A steady increase in the variety and size of software tools for VLSI design.

The above developments have resulted in a proliferation of approaches to VLSI design.VLSI

DESIGN FLOW:

3

Fig 1.1 VLSI Design Flow

2. MULTIPLERS

Multipliers play an important role in today’s digital signal processing and various

other applications. With advances in technology, many researchers have tried and are

trying to design multipliers which offer either of the following design targets

1. High speed,

2. Low power consumption,

3. Regularity of layout and hence less area or even combination of them in one

multiplier thus making them suitable for various high speed,

4. Low power and compact VLSI implementation.

The common multiplication method is “add and shift” algorithm. In parallel

multipliers number of partial products to be added is the main parameter that determines

the performance of the multiplier. To reduce the number of partial products to be added,

with increasing parallelism, the amount of shifts between the partial products and

intermediate sums to be added will increase which may result in reduced speed, increase

in silicon area due to irregularity of structure and also increased power consumption due

to increase in interconnect resulting from complex routing. On the other hand, “serial-

parallel” multipliers compromise speed to achieve better performance for area and power

consumption.

The selection of a parallel or serial multiplier actually depends on the nature of

application. In this lecture we introduce the multiplication algorithms and architecture

and compare them in terms of speed, area, power and combination of these metrics. AND

gates are used to generate the Partial Products (PP). If the multiplicand is N-bits and the

Multiplier is M-bits then there is N* M partial product.

2.1 HISTORY OF MULTIPLIERS

The early computer systems had what are known as Multiply and Accumulate

units to perform multiplication between two binary unsigned numbers. The Multiply and

Accumulate unit was the simplest implementation of a multiplier. The basic block

diagram of such a system is given below fig.2.1.

4

Fig.2.1 Multiplier Block Diagram

2.1.1 IMPLEMENTATION:

The MAC unit requires a 4-bit multiplicand register, 4-bit multiplier register, a 4-

bit full adder and an 8-bit accumulator to hold the product. In the figure above the

product register holds the 8-bit result. In a typical binary multiplication, based on the

multiplier bit being processed, either zero or the multiplicand is shifted and then added.

Following the same process would require an 8-bit adder. Instead, in the above

design the contents of the product register are shifted right by one position and the

multiplicand is added 5 to the contents. This multiply and accumulate block is also

known by the name serial-parallel multiplier as the multiplier bits are processed serially

but the addition takes place in parallel. The second type of multiplier is the parallel array

multiplier.

The desire to speed up the rate at which the output is generated resulted in the

development of this category of multiplier. In a serial-parallel multiplier discussed above,

it takes one clock cycle to process one bit of the data input at any given time. Therefore,

when working on an N-bit input it would take at least N clock cycles to generate the final

output. In a parallel array multiplier the result is obtained as soon as inputs are presented

to the multiplier. This is mainly because of the use of AND array structure to compute

5

the partial product terms. Once the partial product terms are generated the only delay in

generating the output is contributed by the adders which sum the partial product terms

column wise to generate the result. The figure below represents a parallel array multiplier

with N=8 bit inputs.

In Figure 2.1.1 block A stands for an AND gate. Block AHA stands for AND

GATE and HALF ADDER structure and AFA stands for AND GATE and FULL

ADDER structure. FA stands for full adder. The partial product terms are added along

the diagonal (as shown by the arrows along the diagonal) to generate the product bits P.

The carry from each block is passed onto to the next column and this is shown by vertical

arrows. The gate level representation of an AND gate, HALF ADDER and FULL

ADDER is given below fig. 2.1.1.

Fig.2.1.1 Parallel array multiplier for N=8 bits

.

6

Fig.2.2 Gate level implementation of a HALF ADDER.

Fig.2.3 Gate level implementation of a FULL ADDER.

3.1 INTRODUCTION FIELD PROGRAMMABLE GATE

ARRAYS(FPGA’S)

Before the advent of programmable logic, custom logic circuits were built at the

board level using standard components, or at the gate level in expensive application-

specific (custom) integrated circuits. The FPGA is an integrated circuit that contains

many (64 to over 10,000) identical logic cells that can be viewed as standard components.

Each logic cell can independently take on any one of a limited set of personalities. The

individual cells are interconnected by a matrix of wires and programmable switches. A

7

user's design is implemented by specifying the simple logic function for each cell and

selectively closing the switches in the interconnect matrix. The array of logic cells and

interconnects form a fabric of basic building blocks for logic circuits. Complex designs

are created by combining these basic blocks to create the desired circuit.

Field Programmable Gate Arrays (FPGAs) are highly flexible, reprogrammable

logic devices that leverage advanced CMOS manufacturing technologies, similar to other

industry-leading processors and processor peripherals. Like processors and peripherals,

FPGAs are fully user programmable. For FPGAs, the program is called a configuration

bit stream, which defines the FPGA's functionality. The bit stream loads into the FPGA

at system power-up or upon demand by the system. The process whereby the defining

data is loaded or programmed into the FPGA is called configuration. Configuration is

designed to be flexible to accommodate different application needs and, wherever

possible, to leverage existing system resources to minimize system costs.

Similar to microprocessors, FPGAs optionally load or boot themselves

automatically from an external nonvolatile memory device. Alternatively, similar to

microprocessor peripherals, Spartan-3 generation FPGAs can be downloaded or

programmed by an external “smart agent”, such as a microprocessor, DSP processor,

microcontroller, PC, or board tester. In either case, the configuration data path is either

serial to minimize pin requirements or byte-wide for maximum performance or for easier

interfaces to processors or to byte-wide Flash memory. Similar to both processors and

processor peripherals, FPGAs can be reprogrammed, in system, on demand, an unlimited

number of times. After configuration, the FPGA configuration bit stream is stored in

highly robust CMOS configuration latches (CCLs). Although CCLs are reprogrammable

like SRAM memory, CCLs are designed primarily for data integrity, not for performance.

The data stored in CCLs is written only during configuration and remains static unless

changed by another configuration event

A field-programmable gate array (FPGA) is an integrated circuit designed to be

configured by the customer or designer after manufacturing hence "field-programmable".

The FPGA configuration is generally specified using a hardware description language

(HDL), similar to that used for an application-specific integrated circuit (ASIC). FPGAs

can be used to implement any logical function that an ASIC could perform. The ability to

update the functionality after shipping, partial re-configuration of the portion of the

http://en.wikipedia.org/wiki/Integrated_circuit
http://en.wikipedia.org/wiki/Field-programmable
http://en.wikipedia.org/wiki/Hardware_description_language
http://en.wikipedia.org/wiki/Application-specific_integrated_circuit
http://en.wikipedia.org/wiki/Partial_re-configuration

8

design and the low non-recurring engineering costs relative to an ASIC design

(notwithstanding the generally higher unit cost), offer advantages for many applications.

FPGAs contain programmable logic components called "logic blocks", and a

hierarchy of reconfigurable interconnects that allow the blocks to be "wired together

“somewhat like a one-chip programmable breadboard. Logic blocks can be configured to

perform complex combinational functions, or merely simple logic gates like AND,XOR.

In most FPGAs, the logic blocks also include memory elements, which may be simple

flip-flops or more complete blocks of memory.

3.2 ARCHITECTURE

The FPGA is an array or island-style FPGA. It consists of an array of logic blocks

and routing channels. Two I/O pads fit into the height of one row or the width of one

column, as shown Fig 3.1. All the routing channels have the same width (number of

wires). Each circuit must be mapped into the smallest square FPGA that can

accommodate it. For example, a circuit containing 14 logic blocks and 10 I/O pads would

be mapped into an FPGA consisting of a 4x4 array of logic blocks. Note that three of the

twenty benchmark circuits used in the FPGA challenge (big key, des, and dsip) are pad-

limited in this FPGA architecture.

Fig 3.1: FPGA structure

http://en.wikipedia.org/wiki/Programmable_logic_device
http://en.wikipedia.org/wiki/Breadboard
http://en.wikipedia.org/wiki/Combinational_logic
http://en.wikipedia.org/wiki/Logic_gate
http://en.wikipedia.org/wiki/AND_gate
http://en.wikipedia.org/wiki/XOR_gate
http://en.wikipedia.org/wiki/Flip-flop_%28electronics%29

9

The FPGA logic block consists of a 4-input look-up table (LUT), and a flip flop, as

shown in Fig 3.2. There is only one output, which can be either the registered or the

unregistered LUT output. The logic block has four inputs for the LUT and a clock input.

Since the clock is normally routed via a special-purpose dedicated routing network in

commercial FPGAs. That is, you can completely ignore the clock net, since it is assumed

to be routed on a special global network.

4. PROPOSED DST FWBM SYSTEM

4.1 INTRODUCTION

DIGITAL multipliers are widely used in arithmetic units of microprocessors,

multimedia and digital signal processors. Many algorithms and architectures have been

proposed to design high-speed and low-power multipliers [1], [2], [3], [4], [5], [6], [7],

[8], [9], [10], [11], [12], [13]. A normal binary (NB) multiplication by digital circuits

includes three steps. In the first step, partial products are generated; in the second step, all

partial products are added by a partial product reduction tree until two partial product

rows remain. In the third step, the two partial product rows are added by a fast carry

propagation adder. Two methods have been used to perform the second step for the

partial product reduction. A first method uses four-two compressors, while a second

method uses redundant binary (RB) numbers [5], [6]. Both methods allow the partial

product reduction tree to be reduced at a rate of 2:1.

Multipliers are widely used in digital signal processing (DSP) techniques, such as

discrete cosine transform (DCT) and fast Fourier transformThe need for a simple but

accurate fixedwidth multiplier for use in DSP systems has been a topic of discussion for

many years.Two of the most popular types of fixed-width multipliers are the Baugh–

Wooley (BW) array multiplier and the Booth multiplier.The Booth encoder reduces the

number of truncated partial products, and therefore, the accuracy of Booth multipliers is

higher than that of BW multipliers

4.2 DATA SCALING TECHNOLOGY IN FWBM

The proposed DST-FWBM consists of a DST circuit and a low-error FWBM,

which could be a GPEB FWBM, ACPE FWBM, PACS FWBM, or MLCP FWBM. The

DST circuit is implemented using (2L−1) 2-to 1 MUXs with DSb = 1. The FWBM is

surrounded by the DST circuit and consists of a Booth encoder, a carry-save adder (CSA)

10

tree, and a parallel prefix adder. The CSA, which consists of either full adders or half

adders, adds the partial products from the MP, TPma, and the estimated TPmiin all the

low-error FWBMs tested. Finally, the high-speed parallel prefix adder calculates the

products Pd, and the final results Pq are obtained by using the DST circuit.

4.3 ARCHITECTURE

Fig :4.1 Architecture of proposed DST-FWBM with DSb = 1.

In Proposed Architecture there are three stages they are, Booth Encoder, Carry

Select Adder Tree(CSA Tree), & Parallel-prefix Adder.In booth encoder we do binary

multiplication then carry and sum will produce,carry sends to CSA Tree.In CSA Tree

there will be many full adders and half adders then carry is process in CSA Tree then

send to parallel-prefix adder. Then parallel-prefix adder produces product Pd, and Pq is

the result output.

11

4.4 BOOTH’S ALGORITHM FLOWCHART

FIG:4.2 Flow Chart of Booth’s Algorithm.

12

4.4.1 EXAMPLE FOR BOOTH’S ALGORITHM

Qn Qn+1 M= (0111)

M’ + 1 =

(1001) &

Operation

AC Q Qn+1 SC

1 0 Initial 0000 0001 0 4

 Subtract

(M’ + 1)

1001

 1001

 Perform

Arithmetic

Right Shift

Operations

(ashr)

1100 1001 1 3

1 1 Perform

Arithmetic

Right Shift

Operations

(ashr)

1110 0100 1 2

0 1 Addition (A

+ M)

0111

 0101 0100

 Perform

Arithmetic

Right Shift

Operations

0010 1010 0 1

0 0 Perform

Arithmetic

Right Shift

Operations

0001 0101 0 0

13

4.5 ADVANTAGES

 It improves the accuracy of FWBMs

 Delay will be less

 Area will be decrease

 Power consumption is low.

5. SIMULATIONS AND RESULTS

5.1 RTL Schematic of DST in FWBM

 After Synthesis, you need to click on “Synthesized design”, note - this is applicable

only when your design is Synthesized!, you can schematic option below “Synthesized

design”,

 Synthesized design schematic are technology dependent - The inference of the

components includes,

 LUTs, FFs, Carry-Chain, Muxes,

 Block RAMs, DSPs,

 Clocking elements - BUFG, MMCM,

 IO elements - IBUF, OBUF, …

 After Implementation you can click to open “Implemented design” under which you

can schematic option,

 This is similar to Synthesized design on inference but the logic optimized one

14

Fig: -5.1 RTL schematic

5.2 Technology Schematic of DST in FWBM

Technology schematic means the equivalent blocks to u r logic in the library. after

clicking on the technology schematic u will have LUT (Look up table) all those are well

defined in the library after dumping the program into the FPGA kit, all these elements in the

technology schematic will be placed and routed. In the proposed system there were 24 look up

tables have been used.

Fig: - 5.2 Technology schematic

15

5.3 SIMULATION RESULTS

5.3.1 (a) SIMULATION RESULT OF DST FWBM WITH SIGNED VALUES

ISE Simulator is an application that integrates with Xilinx ISE to provide

simulation and testing tools. Two kinds of simulation are used for testing a design:

functional simulation and timing simulation. Functional simulation is used to make sure

that the logic of a design is correct. 53 The inputs were given in unsigned decimal format

by changing from binary by changing the radix of the inputs. The inputs were given by

applying force constants of given inputs a, b, cin.

Fig.5.3.1 (a) Simulation result of DST FWBM

It performs better multiplication operation (75*-25= -1875).

16

5.3.1 (b)

Fig: 5.3.1 (b) Simulation Result

5.3.2 SIMULATION RESULT OF DST FWBM WITH BINARY VALUES

Fig: -5.3.2 Simulation Result of DST FWBM

17

5.4 SYNTHESIS REPORT

Synthesis in VLSI is the process of converting your code(program) into a circuit.

In terms of logic gates, synthesis is the process of translating an abstract design into a

properly implemented chip.

Fig.5.4 Synthesis report

 Design summary gives information about Area and Input and Output pins.

 Total no. of Look Up Tables (LUTs) is 9,312. In that 9,312 LUTs are 144 LUTs

are used in our proposed system.

 Total no.of IOs are 232. In that 32 IOs are used in our proposed system.

 Total Area is 144.

18

5.5 TIMING REPORT

Fig.5.5 Timimg report

Timing paths start and end at clocked elements. Input and Output ports are not

sequential elements, and by default Vivado timing analysis does not time paths to or

from I/O ports in the design, unless input/output delay constraints are specified.

In this the total delay is 23.333ns.

19

5.6 POWER ANALYSIS

Fig.5.6 Power analysis

 Power analysis uses the VCD (Value Change Dump) file generated by the

simulator for the analysis of the switching power and then do the placement and

routing.

 Under place and route, click on the option Analyze Power Distribution.

 The design file would be like “design_name”.ncd. In the physical Constraint file,

select the file “design_name”.pcf. Finally in the simulation activity add the VCD

file “file_name”.vcd.

 Click “OK” and your power report will be generated

Total Power Analysis is “0.081”.

20

6. CONCLUSION:

In this study, we presented the application of a DST circuit to low-error

FWBMs; the proposed DST circuit considerably improved the accuracy of the FWBMs.

The accuracy of the proposed DST-FWBM was close to the ideal accuracy value of P-T

multipliers and exhibited a justifiably small area cost. Upon evaluation of its system

application, the proposed DSTFWBM achieved high accuracy. The DST circuit also

helped improve the accuracy of long-width FWBMs. In summary, DST can be used in

DSP applications, particularly those that require high accuracy.

This project focuses on optimizing the design of the Fused-Add Multiply (FAM)

operator. We propose a structured technique for the direct recoding of the sum of two

numbers to its MB form. We explore three alternative designs of the proposed S-MB

recoder and compare them to the existing ones. The proposed recoding schemes, when

they are incorporated in FAM designs, yield considerable performance improvements in

comparison with the most efficient recoding schemes found in literature.

REFERENCES

[1] Y. H. Chen, T. Y. Chang, and C. Y. Li, “High Throughput DA-based DCT with High

Accuracy Error-compensated Adder Tree,” IEEE Trans. VLSI Syst., vol. 19, no. 4, pp. 709–

714, Apr. 2011.

[2] S. N. Tang, J. W. Tsai, and T. Y. Chang, “A 2.4-GS/s FFT Processor for OFDM-Based

WPAN Applications,” IEEE Trans. Circuits Syst. II, vol. 57, no. 6, pp. 451–455, Jun. 2010.

[3] W. Liu, T. Cao, P. Yin, Y. Zhu, C. Wang, E. E. Swartzlander, and F. Lombardi, “Design and

analysis of approximate redundant binary multipliers,” IEEE Trans. Comput., vol. 68, no. 6,

pp. 804–819, Jun. 2019.

[4] L. D. Van, S. S. Wang, and W. S. Feng, “Design of the lower error fixed-width multiplier and

its application,” IEEE Trans. Circuits Syst. II, vol. 47, no. 10, pp. 1112–1118, Oct. 2000.

[5] I. C. Wey and C. C. Wang, “Low-error and hardware-efficient fixedwidth multiplier by using

the dual-group minor input correction vector to lower input correction vector compensation

error,” IEEE Trans. VLSI Syst., vol. 20, no. 10, pp. 1923–1928, Oct. 2012.

[6] D. Esposito, A. G. M. Strollo, E. Napoli, D. De Caro, and N. Petra, “Approximate multipliers

based on new approximate compressors,” IEEE Trans. Circuits Syst. I, vol. 65, no. 12, pp.

4169–4182, Dec. 2018.

[7] S. J. Jou, M. H. Tsai, and Y. L. Tsao, “Low-error reduced-width Booth multipliers for DSP

applications,” IEEE Trans. Circuits Syst. I, vol. 50, no. 11, pp. 1470–1474, Nov. 2003.

21

[8] M. A. Song, L. D. Van, and S. Y. Kuo, “Adaptive low-error fixed- width Booth multipliers,”

IEICE Trans. Fundamentals, vol. E90-A, no. 6, pp. 1180–1187, Jun. 2007.

[9] Y. H. Chen, T. Y. Chang, and R. Y. Jou, “A statistical error-compensated Booth multiplier

and its DCT applications,” in Proc. IEEE Region 10 Conf., 2010, pp. 1146–1149.

[10] J. P. Wang, S. R. Kuang, and S. C. Liang, “High-Accuracy Fixed-Width Modified Booth

Multipliers for Lossy Applications,” IEEE Trans. VLSI Syst., vol. 19, no. 1, pp. 52–60, Jan.

2011.

[11] C. Y. Li, Y. H. Chen, T. Y. Chang, and J. N. Chen, “A probabilistic estimation bias circuit

for fixed-width Booth multiplier and its DCT applications,” IEEE Trans. Circuits Syst. II,

vol. 58, no. 4, pp. 215–219, Apr. 2011.

[12] Y. H. Chen, C. Y. Li, and T. Y. Chang, “Area-Effective and PowerEfficient Fixed-Width

Booth Multipliers Using Generalized Probabilistic Estimation Bias,” IEEE J. Emerging Sel.

Topics Circuits Syst., vol. 1, no. 3, pp. 277–288, Sep. 2011.

[13] Y. H. Chen and T. Y. Chang, “A High-Accuracy Adaptive ConditionalProbability Estimator

for Fixed-width Booth Multipliers,” IEEE Trans. Circuits Syst. I, vol. 59, no. 3, pp. 594–603,

Mar. 2012.

[14] W. Q. He, Y. H. Chen, and S. J. Jou, “High-Accuracy Fixed-Width Booth Multipliers Based

on Probability and Simulation,” IEEE Trans. Circuits Syst. I, vol. 62, no. 8, pp. 2052–2061,

Aug. 2015.

[15] Y. H. Chen, “An Accuracy-Adjustment Fixed-Width Booth Multiplier Based on Multilevel

Conditional Probability,” IEEE Trans. VLSI Syst., vol. 23, no. 1, pp. 203–207, Jan. 2015.

[16] Z. Zhang and Y. He, “A Low-Error Energy-Efficient Fixed-Width Booth Multiplier With

Sign-Digit-Based Conditional Probability Estimation,” IEEE Trans. Circuits Syst. II, vol. 65,

no. 2, pp. 236–240, Feb. 2018.

[17] M. Chakraborty, R. Shaik, and M. H. Lee, “A Block-Floating-PointBased Realization of the

Block LMS Algorithm,” IEEE Trans. Circuits Syst. II, vol. 53, no. 9, pp. 812–816, 2006.

[18] B. Parhami, Computer arithmetic: algorithms and hardware designs. Oxford, UK: Oxford

University Press, 2000.

[19] S. C. Hsia and S. H. Wang, “Shift-register-based data transposition for cost-effective

discrete cosine transform,” IEEE Trans. VLSI Syst., vol. 15, no. 6, pp. 725–728, Jun. 2007.

