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ABSTRACT 

 
Truncation errors lead to the adverse effects in obtaining the high-speed 

performance with in the DSP. Computation circuits to overcome these issues Data Scaling 

Technology (DST) is used. The difference between a truncated value and the actual value is 

known as Truncation error. This truncation error can be reduced by doing repeated iteration 

using iterative methods. 

Data Scaling Technology (DST) is used in a low error Fixed –Width Booth 

Multipler (FWBM) to reduce truncation in DSP circuits. The proposed DST architecture uses 

the redundant bits of the multiplicand to more efficiently obtain bits for low FWBMs. More 

specifically, a Data Scaling Technology (DST) for use in a low-error Fixed-Width Booth 

Multiplier (FWBM) to reduce truncation errors. The proposed DST uses the redundant bits of 

the multiplicand to more efficiently obtain bits low-error FWBMs. To reduce the truncated 

partial products, which are used to estimate the compensation bias. At the cost of increased 

computations in the FWBM. The accuracy of the FWBM can be improved by adding the 

proposed DST circuit with in the architecture by reduced area overhead and enhanced 

accuracy. 

Expected results indicate that the use of the proposed DST increases the accuracy of 

low error FWBMs with a small area overhead by estimating delay and speed. The 

effectiveness of the proposed method is designed using Verilog HDL program in Xilinx 14.7 

environment. 
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1. INTRODUCTION: 

The complexity of VLSI is being designed and used today makes the manual 

approach to design impractical. Design automation is the order of the day. With the rapid 

technological developments in the last two decades, the status of VLSI technology is 

characterized by the following 

A steady increase in the size and hence the functionality of the ICs: 

 
• A steady reduction in feature size and hence increase in the speed of operation as well as 

gate or transistor density. 

• A steady improvement in the predictability of circuit behavior. 

 
• A steady increase in the variety and size of software tools for VLSI design. 

 
The above developments have resulted in a proliferation of approaches to VLSI design.VLSI 

DESIGN FLOW: 
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Fig 1.1 VLSI Design Flow 

2. MULTIPLERS 

Multipliers play an important role in today’s digital signal processing and various 

other applications. With advances in technology, many researchers have tried and are 

trying to design multipliers which offer either of the following design targets 

1. High speed, 

2. Low power consumption, 

3. Regularity of layout and hence less area or even combination of them in one 

multiplier thus making them suitable for various high speed, 

4. Low power and compact VLSI implementation. 

The common multiplication method is “add and shift” algorithm. In parallel 

multipliers number of partial products to be added is the main parameter that determines 

the performance of the multiplier. To reduce the number of partial products to be added, 

with increasing parallelism, the amount of shifts between the partial products and 

intermediate sums to be added will increase which may result in reduced speed, increase 

in silicon area due to irregularity of structure and also increased power consumption due 

to increase in interconnect resulting from complex routing. On the other hand, “serial- 

parallel” multipliers compromise speed to achieve better performance for area and power 

consumption. 

The selection of a parallel or serial multiplier actually depends on the nature of 

application. In this lecture we introduce the multiplication algorithms and architecture 

and compare them in terms of speed, area, power and combination of these metrics. AND 

gates are used to generate the Partial Products (PP). If the multiplicand is N-bits and the 

Multiplier is M-bits then there is N* M partial product. 

 
2.1 HISTORY OF MULTIPLIERS 

The early computer systems had what are known as Multiply and Accumulate 

units to perform multiplication between two binary unsigned numbers. The Multiply and 

Accumulate unit was the simplest implementation of a multiplier. The basic block 

diagram of such a system is given below fig.2.1. 
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Fig.2.1 Multiplier Block Diagram 

 

2.1.1 IMPLEMENTATION: 

 
 

The MAC unit requires a 4-bit multiplicand register, 4-bit multiplier register, a 4- 

bit full adder and an 8-bit accumulator to hold the product. In the figure above the 

product register holds the 8-bit result. In a typical binary multiplication, based on the 

multiplier bit being processed, either zero or the multiplicand is shifted and then added. 

Following the same process would require an 8-bit adder. Instead, in the above 

design the contents of the product register are shifted right by one position and the 

multiplicand is added 5 to the contents. This multiply and accumulate block is also 

known by the name serial-parallel multiplier as the multiplier bits are processed serially 

but the addition takes place in parallel. The second type of multiplier is the parallel array 

multiplier. 

The desire to speed up the rate at which the output is generated resulted in the 

development of this category of multiplier. In a serial-parallel multiplier discussed above, 

it takes one clock cycle to process one bit of the data input at any given time. Therefore, 

when working on an N-bit input it would take at least N clock cycles to generate the final 

output. In a parallel array multiplier the result is obtained as soon as inputs are presented 

to the multiplier. This is mainly because of the use of AND array structure to compute 
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the partial product terms. Once the partial product terms are generated the only delay in 

generating the output is contributed by the adders which sum the partial product terms 

column wise to generate the result. The figure below represents a parallel array multiplier 

with N=8 bit inputs. 

In Figure 2.1.1 block A stands for an AND gate. Block AHA stands for AND 

GATE and HALF ADDER structure and AFA stands for AND GATE and FULL 

ADDER structure. FA stands for full adder. The partial product terms are added along 

the diagonal (as shown by the arrows along the diagonal) to generate the product bits P. 

The carry from each block is passed onto to the next column and this is shown by vertical 

arrows. The gate level representation of an AND gate, HALF ADDER and FULL 

ADDER is given below fig. 2.1.1. 

 

 

 

 

 

Fig.2.1.1 Parallel array multiplier for N=8 bits 

. 
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Fig.2.2 Gate level implementation of a HALF ADDER. 
 

 
 

 

 

Fig.2.3 Gate level implementation of a FULL ADDER. 

 

 

 

3.1 INTRODUCTION FIELD PROGRAMMABLE GATE 

ARRAYS(FPGA’S) 

 
Before the advent of programmable logic, custom logic circuits were built at the 

board level using standard components, or at the gate level in expensive application- 

specific (custom) integrated circuits. The FPGA is an integrated circuit that contains 

many (64 to over 10,000) identical logic cells that can be viewed as standard components. 

Each logic cell can independently take on any one of a limited set of personalities. The 

individual cells are interconnected by a matrix of wires and programmable switches. A 
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user's design is implemented by specifying the simple logic function for each cell and 

selectively closing the switches in the interconnect matrix. The array of logic cells and 

interconnects form a fabric of basic building blocks for logic circuits. Complex designs 

are created by combining these basic blocks to create the desired circuit. 

 
Field Programmable Gate Arrays (FPGAs) are highly flexible, reprogrammable 

logic devices that leverage advanced CMOS manufacturing technologies, similar to other 

industry-leading processors and processor peripherals. Like processors and peripherals, 

FPGAs are fully user programmable. For FPGAs, the program is called a configuration 

bit stream, which defines the FPGA's functionality. The bit stream loads into the FPGA 

at system power-up or upon demand by the system. The process whereby the defining 

data is loaded or programmed into the FPGA is called configuration. Configuration is 

designed to be flexible to accommodate different application needs and, wherever 

possible, to leverage existing system resources to minimize system costs. 

 
Similar to microprocessors, FPGAs optionally load or boot themselves 

automatically from an external nonvolatile memory device. Alternatively, similar to 

microprocessor peripherals, Spartan-3 generation FPGAs can be downloaded or 

programmed by an external “smart agent”, such as a microprocessor, DSP processor, 

microcontroller, PC, or board tester. In either case, the configuration data path is either 

serial to minimize pin requirements or byte-wide for maximum performance or for easier 

interfaces to processors or to byte-wide Flash memory. Similar to both processors and 

processor peripherals, FPGAs can be reprogrammed, in system, on demand, an unlimited 

number of times. After configuration, the FPGA configuration bit stream is stored in 

highly robust CMOS configuration latches (CCLs). Although CCLs are reprogrammable 

like SRAM memory, CCLs are designed primarily for data integrity, not for performance. 

The data stored in CCLs is written only during configuration and remains static unless 

changed by another configuration event 

 
A field-programmable gate array (FPGA) is an integrated circuit designed to be 

configured by the customer or designer after manufacturing hence "field-programmable". 

The FPGA configuration is generally specified using a hardware description language 

(HDL), similar to that used for an application-specific integrated circuit (ASIC). FPGAs 

can be used to implement any logical function that an ASIC could perform. The ability to 

update the functionality after shipping, partial re-configuration of the portion of the 

http://en.wikipedia.org/wiki/Integrated_circuit
http://en.wikipedia.org/wiki/Field-programmable
http://en.wikipedia.org/wiki/Hardware_description_language
http://en.wikipedia.org/wiki/Application-specific_integrated_circuit
http://en.wikipedia.org/wiki/Partial_re-configuration
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design and the low non-recurring engineering costs relative to an ASIC design 

(notwithstanding the generally higher unit cost), offer advantages for many applications. 

 
FPGAs contain programmable logic components called "logic blocks", and a 

hierarchy of reconfigurable interconnects that allow the blocks to be "wired together 

“somewhat like a one-chip programmable breadboard. Logic blocks can be configured to 

perform complex combinational functions, or merely simple logic gates like AND,XOR. 

In most FPGAs, the logic blocks also include memory elements, which may be simple 

flip-flops or more complete blocks of memory. 

 

3.2 ARCHITECTURE 

 
The FPGA is an array or island-style FPGA. It consists of an array of logic blocks 

and routing channels. Two I/O pads fit into the height of one row or the width of one 

column, as shown Fig 3.1. All the routing channels have the same width (number of 

wires). Each circuit must be mapped into the smallest square FPGA that can 

accommodate it. For example, a circuit containing 14 logic blocks and 10 I/O pads would 

be mapped into an FPGA consisting of a 4x4 array of logic blocks. Note that three of the 

twenty benchmark circuits used in the FPGA challenge (big key, des, and dsip) are pad- 

limited in this FPGA architecture. 

 

 
 

 

 

Fig 3.1: FPGA structure 

 
 

http://en.wikipedia.org/wiki/Programmable_logic_device
http://en.wikipedia.org/wiki/Breadboard
http://en.wikipedia.org/wiki/Combinational_logic
http://en.wikipedia.org/wiki/Logic_gate
http://en.wikipedia.org/wiki/AND_gate
http://en.wikipedia.org/wiki/XOR_gate
http://en.wikipedia.org/wiki/Flip-flop_%28electronics%29
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The FPGA logic block consists of a 4-input look-up table (LUT), and a flip flop, as 

shown in Fig 3.2. There is only one output, which can be either the registered or the 

unregistered LUT output. The logic block has four inputs for the LUT and a clock input. 

Since the clock is normally routed via a special-purpose dedicated routing network in 

commercial FPGAs. That is, you can completely ignore the clock net, since it is assumed 

to be routed on a special global network. 

 

4. PROPOSED DST FWBM SYSTEM 

4.1 INTRODUCTION 

 
DIGITAL multipliers are widely used in arithmetic units of microprocessors, 

multimedia and digital signal processors. Many algorithms and architectures have been 

proposed to design high-speed and low-power multipliers [1], [2], [3], [4], [5], [6], [7], 

[8], [9], [10], [11], [12], [13]. A normal binary (NB) multiplication by digital circuits 

includes three steps. In the first step, partial products are generated; in the second step, all 

partial products are added by a partial product reduction tree until two partial product 

rows remain. In the third step, the two partial product rows are added by a fast carry 

propagation adder. Two methods have been used to perform the second step for the 

partial product reduction. A first method uses four-two compressors, while a second 

method uses redundant binary (RB) numbers [5], [6]. Both methods allow the partial 

product reduction tree to be reduced at a rate of 2:1. 

Multipliers are widely used in digital signal processing (DSP) techniques, such as 

discrete cosine transform (DCT) and fast Fourier transformThe need for a simple but 

accurate fixedwidth multiplier for use in DSP systems has been a topic of discussion for 

many years.Two of the most popular types of fixed-width multipliers are the Baugh– 

Wooley (BW) array multiplier and the Booth multiplier.The Booth encoder reduces the 

number of truncated partial products, and therefore, the accuracy of Booth multipliers is 

higher than that of BW multipliers 

 
4.2 DATA SCALING TECHNOLOGY IN FWBM 

 

The proposed DST-FWBM consists of a DST circuit and a low-error FWBM, 

which could be a GPEB FWBM, ACPE FWBM, PACS FWBM, or MLCP FWBM. The 

DST circuit is implemented using (2L−1) 2-to 1 MUXs with DSb = 1. The FWBM is 

surrounded by the DST circuit and consists of a Booth encoder, a carry-save adder (CSA) 
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tree, and a parallel prefix adder. The CSA, which consists of either full adders or half 

adders, adds the partial products from the MP, TPma, and the estimated TPmiin all the 

low-error FWBMs tested. Finally, the high-speed parallel prefix adder calculates the 

products Pd, and the final results Pq are obtained by using the DST circuit. 

 

 

 

4.3 ARCHITECTURE 
 

 

 

 

 

 

Fig :4.1 Architecture of proposed DST-FWBM with DSb = 1. 

 
 

In Proposed Architecture there are three stages they are, Booth Encoder, Carry 

Select Adder Tree(CSA Tree), & Parallel-prefix Adder.In booth encoder we do binary 

multiplication then carry and sum will produce,carry sends to CSA Tree.In CSA Tree 

there will be many full adders and half adders then carry is process in CSA Tree then 

send to parallel-prefix adder. Then parallel-prefix adder produces product Pd, and Pq is 

the result output. 
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4.4 BOOTH’S ALGORITHM FLOWCHART 
 

 

 

 

 

 

 

 

 

FIG:4.2 Flow Chart of Booth’s Algorithm. 
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4.4.1 EXAMPLE FOR BOOTH’S ALGORITHM 
 

 
Qn Qn+1 M= (0111) 

M’ + 1 = 

(1001) & 

Operation 

AC Q Qn+1 SC 

1 0 Initial 0000 0001 0 4 

  Subtract 

(M’ + 1) 

1001    

   1001    

  Perform 

Arithmetic 

Right Shift 

Operations 

(ashr) 

1100 1001 1 3 

1 1 Perform 

Arithmetic 

Right Shift 

Operations 

(ashr) 

1110 0100 1 2 

0 1 Addition (A 

+ M) 

0111    

   0101 0100   

  Perform 

Arithmetic 

Right Shift 

Operations 

0010 1010 0 1 

0 0 Perform 

Arithmetic 

Right Shift 

Operations 

0001 0101 0 0 
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4.5 ADVANTAGES 

 It improves the accuracy of FWBMs 

 Delay will be less 

 Area will be decrease 

 Power consumption is low. 

5. SIMULATIONS AND RESULTS 

5.1 RTL Schematic of DST in FWBM 

 After Synthesis, you need to click on “Synthesized design”, note - this is applicable 

only when your design is Synthesized!, you can schematic option below “Synthesized 

design”, 

 Synthesized design schematic are technology dependent - The inference of the 

components includes, 

 LUTs, FFs, Carry-Chain, Muxes, 

 Block RAMs, DSPs, 

 Clocking elements - BUFG, MMCM, 

 IO elements - IBUF, OBUF, … 

 After Implementation you can click to open “Implemented design” under which you 

can schematic option, 

 This is similar to Synthesized design on inference but the logic optimized one 
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Fig: -5.1 RTL schematic 
 

 

 

 

5.2 Technology Schematic of DST in FWBM 

 
 

Technology schematic means the equivalent blocks to u r logic in the library. after 

clicking on the technology schematic u will have LUT (Look up table) all those are well 

defined in the library after dumping the program into the FPGA kit, all these elements in the 

technology schematic will be placed and routed. In the proposed system there were 24 look up 

tables have been used. 

 
 

 

 

 

Fig: - 5.2 Technology schematic 
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5.3 SIMULATION RESULTS 

 
 

5.3.1 (a) SIMULATION RESULT OF DST FWBM WITH SIGNED VALUES 

ISE Simulator is an application that integrates with Xilinx ISE to provide 

simulation and testing tools. Two kinds of simulation are used for testing a design: 

functional simulation and timing simulation. Functional simulation is used to make sure 

that the logic of a design is correct. 53 The inputs were given in unsigned decimal format 

by changing from binary by changing the radix of the inputs. The inputs were given by 

applying force constants of given inputs a, b, cin. 

 
 

 

 

Fig.5.3.1 (a) Simulation result of DST FWBM 

 

 
It performs better multiplication operation (75*-25= -1875). 
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5.3.1 (b) 
 

 

Fig: 5.3.1 (b) Simulation Result 

 
 

5.3.2 SIMULATION RESULT OF DST FWBM WITH BINARY VALUES 
 

 

Fig: -5.3.2 Simulation Result of DST FWBM 
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5.4 SYNTHESIS REPORT 

Synthesis in VLSI is the process of converting your code(program) into a circuit. 

In terms of logic gates, synthesis is the process of translating an abstract design into a 

properly implemented chip. 

 

 

 
 

 

 
 

Fig.5.4 Synthesis report 

 

 

 
 Design summary gives information about Area and Input and Output pins. 

 Total no. of Look Up Tables (LUTs) is 9,312. In that 9,312 LUTs are 144 LUTs 

are used in our proposed system. 

 Total no.of IOs are 232. In that 32 IOs are used in our proposed system. 

 Total Area is 144. 
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5.5 TIMING REPORT 
 

 

 

Fig.5.5 Timimg report 

 

 

 
Timing paths start and end at clocked elements. Input and Output ports are not 

sequential elements, and by default Vivado timing analysis does not time paths to or 

from I/O ports in the design, unless input/output delay constraints are specified. 

In this the total delay is 23.333ns. 
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5.6 POWER ANALYSIS 
 

 

 
 

 

Fig.5.6 Power analysis 

 

 

 
 Power analysis uses the VCD (Value Change Dump) file generated by the 

simulator for the analysis of the switching power and then do the placement and 

routing. 

 Under place and route, click on the option Analyze Power Distribution. 

 The design file would be like “design_name”.ncd. In the physical Constraint file, 

select the file “design_name”.pcf. Finally in the simulation activity add the VCD 

file “file_name”.vcd. 

 Click “OK” and your power report will be generated 

Total Power Analysis is “0.081”. 
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6. CONCLUSION: 

In this study, we presented the application of a DST circuit to low-error 

FWBMs; the proposed DST circuit considerably improved the accuracy of the FWBMs. 

The accuracy of the proposed DST-FWBM was close to the ideal accuracy value of P-T 

multipliers and exhibited a justifiably small area cost. Upon evaluation of its system 

application, the proposed DSTFWBM achieved high accuracy. The DST circuit also 

helped improve the accuracy of long-width FWBMs. In summary, DST can be used in 

DSP applications, particularly those that require high accuracy. 

This project focuses on optimizing the design of the Fused-Add Multiply (FAM) 

operator. We propose a structured technique for the direct recoding of the sum of two 

numbers to its MB form. We explore three alternative designs of the proposed S-MB 

recoder and compare them to the existing ones. The proposed recoding schemes, when 

they are incorporated in FAM designs, yield considerable performance improvements in 

comparison with the most efficient recoding schemes found in literature. 
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